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DISSERTAÇÃO DE MESTRADO

Dissertation presented to the Programa de Pós–Graduação
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Abstract

Malta, Marcelo; Poggi, Marcus; Martinelli, Rafael. Strong Lower
Bounds for the CVRP via Column and Cut Generation. Rio de
Janeiro, 2016. 67p. MSc Thesis – Departamento de Informática, Ponti-
f́ıcia Universidade Católica do Rio de Janeiro.

The Capacitated Vehicle Routing Problem (CVRP) is the seminal version of

the vehicle routing problem, a classical problem in Operational Research. Introduced

by Dantzig e Ramser, the CVRP generalizes the Traveling Salesman Problem (TSP)

and the Bin Packing Problem (BPP). In addition, routing problems arise in several

real world applications, often in the context of reducing costs, polluent emissions

or energy within transportation activities. In fact, the cost with transportation can

be roughly estimated to represent 5% to 20% of the overall cost of a delivered

product. This means that any saving in routing can be much relevant. The CVRP

is stated as follows: given a set of n + 1 locations – a depot and n customers –

the distances between every pair of locations, integer demands associated with each

customer, and a vehicle capacity, we are interested in determining the set of routes

that start at the depot, visits each customer exactly once and returns to the depot.

The total distance traveled by the routes should be minimized and the sum of

the demands of customers on each route should not exceed the vehicle capacity.

This work considers that the number of available vehicles is given. State of the art

algorithms for finding and proving optimal solutions for the CVRP compute their

lower bounds through column generation and improving it by adding cutting planes.

The columns generated may be elementary routes, where customers are visited only

once, or relaxations such as q-routes and the more recent ng-routes, which differ

on how they allow repeating customers along the routes. Cuts may be classified as

robust, those that are defined over arc variables, and non-robust (or strong), those

that are defined over the column generation master problem variables. The term

robust used above refers to how adding the cut modifies the efficiency of solving the

pricing problem. Besides the description above, the most efficient exact algorithms

for the CVRP use too many elements turning its replication a hard long task. The

objective of this work is to determine how good can be lower bounds computed by

a column generation algorithm on ng-routes using only capacity cuts and a family

of strong cuts, the limited memory subset row cuts. We assess the leverage achieved

with the consideration of this kind of strong cuts and its combination with others

techniques like Decremental Space State Relaxation (DSSR), Completion Bounds,

ng-Routes and Capacity Cuts over a Set Partitioning formulation of the problem.

Extensive computational experiments are presented along with an analysis of the

results obtained.

Keywords
Routing; Column Generation; CVRP; Pricing; Non-robust cuts;
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Resumo

Malta, Marcelo; Poggi, Marcus; Martinelli, Rafael. Limites Inferiores
Fortes para o CVRP via Geração de Colunas e Cortes. Rio de
Janeiro, 2016. 67p. Dissertação de Mestrado – Departamento de Infor-
mática, Pontif́ıcia Universidade Católica do Rio de Janeiro.

O Capacitated Vehicle Routing Problems (CVRP) é uma versão seminal do

problema de roteamento de véıculos, um clássico problema em Pesquisa Operacional.

Introduzido por Dantzig e Ramser, o CVRP generaliza o Traveling Salesman

Problem (TSP) e o Bin Packing Problem (BPP). Problemas de roteamento aparecem

em diversas aplicações no mundo real, geralmente no contexto de diminuição de

custos, emissão de poluentes ou energia dentro das atividades relacionadas ao

transporte. De fato, estes custos podem ficar entre 5% e 20% do custo total do

produto. Por isto, qualquer economia nos custos de roteamento pode ser relevante.

O CVRP é definido da seguinte maneira: dado um conjunto de n + 1 localidades –

um depósito e n clientes – as distâncias entre cada par de localidades, as demandas

inteiras associadas a cada cliente e a capacidade do véıculo, quer se obter um conjunto

de rotas que comecem no depósito, visitem cada cliente apenas uma vez e retornem

ao depósito. A distâncias percorrida deve ser mı́nima e a soma das demandas dos

clientes presentes em cada rota não pode exceder a capacidade do véıculo. Este

trabalho considera que o número de véıculos dispońıveis é conhecido. Algoritmos

no estado da arte para encontrar e provar que uma solução é ótima, para o CVRP,

calculam seus limites inferiores através de geração de colunas e depois os melhoram

com a adição de planos de corte. As colunas geradas podem ser rotas elementares,

onde obrigatoriamente cada cliente é visitado somente uma vez, ou uma relaxação

desta obrigação com o uso de q-rotas ou ng-rotas, que diferem apenas em como é

permitido que um cliente seja revisitado dentro de uma mesma rota. Já os cortes são

classificados como robustos, aquele que são definidos sobre as variáveis dos arcos, e

não robustos (ou fortes), que são os definidos sobre as variáveis do problema mestre

da geração de colunas. O termo robusto, usado acima, se refere a como a adição do

corte modifica a eficiência da resolução do problema de pricing. Além do descrito

acima, o algoritmo exato mais eficiente para o CVRP usa muitos elementos, o que

torna sua replicação uma tarefa dif́ıcil e longa. O objetivo deste trabalho é determinar

o quão bom são os limites inferiores obtidos com geração de colunas de ng-rotas

usando apenas cortes de capacidade e os recentes subset row cuts de memória

limitada. Além disto, é avaliado o ganho conseguido com a consideração deste tipo

de corte forte e as combinações com outras técnicas, como por exemplo, Decremental

Space State Relaxation (DSSR), Completion Bounds, ng-rotas e cortes de capacidade

sobre a formulação de Set Partitioning. Extensos experimentos computacionais são

apresentados em conjunto com a análise dos resultados obtidos.

Palavras–chave
Roteamento; Geração de Colunas; CVRP; Pricing; Cortes não robustos;
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I
Introduction

Since the first appearance in the literature in the late 50’s in the original work

of Dantzig and Ramser [1], the Capacitated Vehicle Routing Problem (CVRP) has

been widely studied by many researchers. Many contributions have been made in sev-

eral directions since then. Some researchers focus on finding an exact algorithm, while

others are concentrating efforts to find quasi-optimum solutions, meta-heuristics and

hybrid methods. The objective of this text is to study the most recent proposed exact

methods and understand the leverage gained in order to propose simple algorithms

to find high quality lower bounds.

As shown in Toth and Vigo [2], it is estimated that the cost with the

transportation can roughly be between 5% to 20% of the overall cost of a delivered

product. This means that any saving in routing can be much relevant. Here is where

the routing problem plays a significant role in real life scenario.

The CVRP can be defined as follows: a set of customers, each with a demand,

needs to be serviced by a number of vehicles starting and ending at a central depot.

Each customer needs to be visited exactly once while capacity of vehicle must not be

exceeded. The objective is to service all customers traveling the minimum distance.

The CVRP is classified as being an NP-hard problem, therefore the use of

exact optimization methods or simple enumerations of all feasible solutions may be

difficult in acceptable CPU times, especially when the problem involves real-world

data sets or when the instances are very large. Furthermore, it is easy to prove its

NP-completeness, since a CVRP with only one vehicle is the Traveling Salesman

Problem (TSP) itself. As a result, there is no known polynomial time algorithm to

find and prove its solution to be optimal. Exact methods to solve this problem rely

on the use of lower bounds. The lower bounds proposed in the last thirty years are

almost always based on mixed integer programming formulations.

Many formulations were suggested for this problem in the literature. Maybe

the most basic one is the formulation based on a multi-commodity flow, introduced

by Ford et al. [3]. Although this formulation has a polynomial number of constraints

and variables, its linear relaxation is weak and, because of that, the efficiency of the

method turned out to be quite limited. Another example of formulation is the one

suggested by Laporte [4], the Two-Index Formulation (TIF), which has a stronger

linear relaxation and successfully solved small instances using Branch-and-Cut (BC).

Until nowadays this is usually the best formulation to solve instances where the
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Chapter I. Introduction 11

routes in the solution must service many customers. It should be noted that this

formulation has an exponential number of constraints, what is most often not an

issue when computing the corresponding lower bound. A third formulation, which

is central to this work is the Set Partitioning Formulation (SP) [5]. Usually, this

formulation’s linear relaxation produces a strong lower bound. The most successful

recent exact algorithms use this formulation. The drawback of the SP formulation

is that it has an exponential number of variables. Therefore it is necessary to use a

Column Generation approach in order to deal with this large number of variables.

Column Generation is a technique used to solve formulations with an exponen-

tial number of variables. On each iteration, just a subset of variables is considered

and, based on the current solution, one or more new variables with minimum reduced

cost are generated through the resolution of a combinatorial optimization problem.

Thus, the problem is solved iteratively, and the selection (pricing) of the new vari-

ables to be inserted in the formulation leads to improvements on the solution, i.e.

they must have negative reduced cost. This auxiliary combinatorial optimization

problem mentioned above is then called the pricing sub-problem.

CVRP formulations are limited to consider only routes that visit each customer

exactly once. These routes are called elementary routes. When just such columns are

considered, the column generation sub-problem correspond to solve the Elementary

Shortest Path Problem with Resource Constraint (ESPPRC), which is known to be

strongly NP-hard as shown by Dror [6]. The hardness of ESPPRC has motivated

Christofides, Mingozzi and Toth [7] to also consider columns that are not elementary.

They proposed the so-called q-routes, where customers can be visited as many times

as desired as long as the demand of each customer is counted every time it is visited.

The column generation sub-problem now corresponds to solve the Shortest Path

Problem with Resource Constraints (SPPRC), which is weakly NP-hard, i.e., there

are pseudo-polynomial algorithms available for solving it.

Naturally, relaxing the routes implies having weaker lower bounds. Tighter

lower bounds can be obtained by enforcing partial elementarity on the set of q-

routes. A first effort is to forbid the q-routes to have cycles of small sizes. The

larger is the size of the smallest cycle in the q-routes the better is the lower

bounds obtained. Unfortunately, the complexity of eliminating cycles grows with the

factorial of the size of the largest eliminated cycle, shown by Irnich and Villeneuve [8].

This motivated the proposition of another route relaxation: ng-routes, introduced

by Baldacci et al. [9]. It intends to prevent cycles among customers in a given

neighborhood.

The CVRP lower bounds obtained with the SP formulation can be

strengthened by adding polyhedral cuts. This work considers only two classes of

cuts: (i) The Rounded Capacity Cuts, which are defined over the variables of the

TIF formulation and can be directly translated to the variables of the SP formu-

lation. (ii) The Limited Memory Subset Row Cuts, which are a generalization of

the Subset Row Cuts and are defined over the variables of the SP formulation. This
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Chapter I. Introduction 12

dissertation aims at developing pricing and separation algorithms for finding lower

bounds for the CVRP using the SP formulation with ng-routes and these two classes.

I.1 Literature Review
As briefly mentioned before, the first algorithm to solve the SPPRC was

proposed by Christofides et al. citechristofides-qroute. It introduced the idea of q-

routes without 2-cycles, which allows multiple visits to a customer in a same route,

on the condition that at least two other customers are visited between successive

visits. The elimination of 2-cycles does not change the overall complexity of the

pricing algorithm, but it improves significantly the lower bounds obtained. Later,

Irnich and Villeneuve [8] generalized q-routes to eliminate k-cycles, but this included

a factor of k! to the time complexity of the pricing. Fukasawa et al. [10] showed that is

not worthy to use k > 4. Besides, they were able to solve to optimality all instances

in the literature with up 135 customers using a Branch-Cut-and-Price algorithm

using only cuts on the Two-Index Formulation.

Later in 2008, Baldacci et al. [11] solved almost all instances in Fukasawa

et al. [10] work within considerably less computational time. They were able to

obtain good estimates for the optimal dual variables values, leading the algorithm

to converge in fewer iterations. Moreover, the cuts on the Two-Index Formulation

and other cuts for the Set Partitioning formulation as Strengthened Capacity Cuts

and Clique Cuts were also used. In the same year, Pessoa et al. [12] improved upon

Fukasawa et al.[10] using cuts from an extended formulation with capacity index.

Differently from the cuts on the Set Partitioning Formulation, these cuts do not

change the complexity of the dynamic programming algorithm used to price the

q-routes.

Three years after their previous paper, Baldacci et al. [9] introduced a

new route relaxation named ng-routes. Those routes prevent cycles within the

neighborhood of each customer. This new relaxation improves a lot the bounds

obtained with q-routes. Using this new relaxation along with Subset Row Cuts and

Weak Subset Row Cuts, the results presented in Baldacci et al. [11] were improved,

but no new optimal solution was proved.

In 2011, Martinelli et al. [13] were able to increase the size of the neighborhoods

of customers which are forbidden. The performance of the exact pricing was enhanced

by using Decremental State Space Relaxation (DSSR), proposed by Righini and

Salani [14], and completion bounds. This technique iteratively grows the size of

the neighborhoods on which cycles are forbidden. This idea was later extended by

Martinelli et al. [15] leading to a speed up of the solution of the ESPPRC.

In 2012, Contardo [16] successfully solved for the very first time the hard

instance M-n151-k12. To obtain this result, he combined cuts from the Two-Index

Formulation with the Strong Strengthened Capacity Cuts and the Subset Row

Cuts. The columns were q-routes without 2-cycles. Although this leads to a poor
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Chapter I. Introduction 13

relaxation, the partial elementarity of the routes was enforced by the Strong Degree

Cuts. These cuts are an alternative way to prevent a customer to be revisited and

consequently guaranteeing partial elementarity. In the sequence, Røpke [17] also

solved successfully the instance M-n151-k12 after a long run of a Branch-Cut-and-

Price algorithm with specialized branching rules and strong branching – it took

almost 6 days.

In 2014, Contardo and Martinelli [18] combined their previous works ([13],

[16]). Using ng-route relaxation, DSSR and completion bounds, the pricing was

improved. Strengthened Capacity Cuts, Subset Row Cuts and Strong Degree Cuts

were also considered. With these changes, they were able to solve for the very first

time the hard instance F-n135-k7 using only a column generation approach.

And finally, also in 2014, Pecin et al. [19] introducted the Limited Memory

Subset Row Cuts. They are a weakening of the traditional Subset Row Cuts,

introduced in Jepsen et al. [20], which are Chvátal-Gomory rank-1 cuts. This

weakening allows the pricing to be dynamically adjusted, making it much less costly

and yet without compromising its effectiveness. Combining this relaxation with

elements from all previous work the algorithm was able to solve all the classical

instances from the literature with up to 200 vertices in reasonable times, including

the hard instances M-n200-k17 and M-n200-k16.

I.2 Motivation
The algorithm proposed by Pecin et al. [21] was the first one to solve all

the classical instances from the literature with up to 200 vertices. However, this

algorithm was a combination of several methods and it is not clear what was the

improvement made by each one. It is believed that lm-SRC was the main contribution

for this improvement.

Therefore, the objective of this work is to devise a pure implementation of

the algorithm proposed in Pecin et al. [21], using only the lm-SRC combined with

Rounded Capacity Cuts on the SP formulation considering ng-routes. This has not

been done yet and will enlighten the improvement that can be obtained on the lower

bounds. To evaluate this approach, we run the algorithm for the same instances that

Pecin et al. [21] and we also present the lower bounds for different sizes of ng-sets.

I.3 Thesis Outline
This thesis is structured as follows.

– Chapter II presents the two most used formulations to solve the CVRP.

– Chapter III explains how to use a Column Generation approach to solve

the Set Partitioning Formulation. It also shows techniques to improve the

performance of pricing new columns.
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– Chapter IV introduces examples of cuts that can be separated in attempt of

improving the bounds obtained.

– Chapter V presents computational results.

– Chapter VI draws some insights from what is reported and suggest some future

work.
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II
Mathematical Formulations

This section presents two formulations to solve the CVRP. We start with the

Two Index Formulation (TIF), which was proposed by Laporte and Nobert [4]. Then,

we present the Set Partitioning Formulation proposed by Balinski and Quandt [5],

which is the widely adopted formulation to solve the CVRP.

II.1 Two Index Formulation
The CVRP considers a complete and undirected graph G = (V,E) where V =

{0, . . . , n} represents the vertex set and E the edges set. Vertices in N = {1, . . . , n}
correspond to the customers, whereas the depot is represented by 0. Each edge

(i, j) ∈ E can be represented by a single index e = (i, j) and it has a nonnegative

cost cij to be traversed and xe denotes the number of times the edge is traversed

by a vehicle. Each customer i has a nonnegative demand qi and Q represents the

capacity of each vehicle k available in the fleet K. Given a set of customers S ⊆ V ,

let δ(S) denote the set of edges e ∈ E which have only one endpoint in S. Let

q(S) =
∑

i∈S qi and let r(S) be a lower bound on the number of vehicles needed to

service the customers on set S. The overall objective is to minimize the total cost

of the edges traversed. The Two Index Formulation is then defined as follows:

(TIF) min
∑
e∈E

cexe (II.1)

subject to ∑
e∈δ({i})

xe = 2 ∀i ∈ N (II.2)

∑
e∈δ({0})

xe = 2|K| (II.3)

∑
e∈δ(S)

xe ≥ 2r(S) ∀S ⊆ N (II.4)

xe ∈ {0, 1} , ∀e ∈ E \ δ(0) (II.5)

xe ∈ {0, 1, 2} ∀e ∈ δ(0) (II.6)

Constraints (II.2) guarantee that each customer is serviced by just one vehicle

(it must arrive and leave the customer). In addition, the constraint (II.3) imposes
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that if we take the set of edges with an endpoint at the depot, considering that we

have |K| vehicles leaving and returning to it, then there are 2|K| edges from this set

being traversed. These two constraints are also known as the degree constraints and

they are part of the polynomial-sized constraints of the formulation. The constraints

(II.4) are the capacity constraints which, for any subset S of customers, state that

at least r(S) vehicles must enter and leave S. Note that these constraints, besides

assuring that no vehicle will have its capacity violated, they also eliminate subtours.

The exact way to obtain r(S) is by solving a Bin Packing problem, which is known

to be an NP-Hard problem [22]. However, the formulation remains valid if r(S)

is replaced by a lower bound on its value, such as k(S) = dq(S)/Qe. Constraints

(II.5) impose that xe can be 1 or 0, representing whether the edge was traversed or

not. And finally, the constraints (II.6) allow some xe to be also 2 if the edge has an

endpoint at the depot, allowing routes with only one customer to be build. Those

last two constraints are the integrality constraints.

Until today this is the best formulation to solve instances in which there are

routes with too many customers to be service on the solutions found. It should be

noted that this formulation has an exponential number of constraints, what is often

not an issue when computing its corresponding lower bounds.

II.2 Set Partitioning
The Two Index Formulation can be rewritten using a variable for each feasible

route. A route is a path which starts at the depot, traverses a sequence of customers

and finishes back to depot without violating the vehicle’s capacity Q. Let Ω represent

the set of all feasible routes. We define a binary variable λr which represents whether

the route r ∈ Ω is used or not. Let ber be a constant value indicating how many times

route r traverses edge e. The reformulation is as follows.

min
∑
e∈E

cexe (II.7)

subject to ∑
r∈Ω

berλr = xe ∀e ∈ E (II.8)∑
e∈δ({i})

xe = 2 ∀i ∈ N (II.9)

∑
e∈δ({0})

xe = 2|K| (II.10)

λr ∈ {0, 1} ∀r ∈ Ω (II.11)

xe ∈ {0, 1} ∀e ∈ E \ δ(0) (II.12)

xe ∈ {0, 1, 2} ∀e ∈ δ(0) (II.13)

Constraints (II.8) bind varaibles xe and λr. xe is given by the number of times
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an edge is traversed by all routes in the set Ω. Now we can replace variables xe using

this relation with λr to obtain a new formulation.

min
∑
e∈E

ce
∑
r∈Ω

berλr (II.14)

subject to ∑
e∈δ({i})

∑
r∈Ω

berλr = 2, ∀i ∈ N (II.15)

∑
e∈δ({0})

∑
r∈Ω

berλr = 2|K| (II.16)

λr ∈ {0, 1} ∀r ∈ Ω (II.17)

Let air ∈ {0, 1} denote if a customer i is visited by a route r. Knowing that

a route traverses two adjacent edges when servicing a customer and when leaving

and returning to the depot, we can write
∑

e∈δ({i}) b
e
r = 2air,∀i ∈ V and ∀r ∈ Ω.

Analogously, we can also write the cost of a route cr =
∑

e∈E ceb
e
r, ∀r ∈ Ω. Finally,

we can write the Set Partitioning Formulation as follows.

(SP ) min
∑
r∈Ω

crλr (II.18)

subject to ∑
r∈Ω

airλr = 1, ∀i ∈ N (II.19)∑
r∈Ω

λr = |K|, (II.20)

λr ∈ {0, 1} ∀r ∈ Ω (II.21)

Constraints (II.19) impose that a customer i is serviced by only one route

r ∈ Ω. Constraint (II.20) assures that |K| vehicles are used. And finally, constraints

(II.21) force the variables λr to be binary.

Despite the fact that at first the formulation seems quite simple, the set Ω can

contain an exponential number of routes which results in an exponential number of

variables. So, to handle that it is necessary the use of a Column Generation approach,

as presented in Chapter III.

It is important to notice that it is not necessary that set Ω contain only

elementary routes because the formulation will discard any route with coefficient

air > 1 through the constraint (II.19), since the λr variables are binary. This behavior

makes the task to solve the Column Generation easier, but the quality of the lower

bounds obtained may drop significantly, as we will discuss in Chapter III.
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III
Column Generation

Column generation is a technique that allows dealing with linear programs with

a large number of variables, usually the ones on which the number of variables grows

exponentially with the size of the problem. This can be exploited when the search

for a variable with smallest reduced cost can be done by solving a combinatorial

optimization problem. The overall idea is to split the linear programming problem in

two problems: the restricted master problem and the pricing sub-problem. Analogous

to the revised simplex method, the restricted master considers only a small subset

of the variables. In order to obtain new columns/variables to improve the restricted

master solution, an auxiliary problem called pricing sub-problem is solved. The input

for the pricing problem are the values of the dual variables at the current restricted

master optimal solution. Determining whether there are new columns with potential

to improve the master solution reduces to check whether the optimum solution value

for the pricing sub-problem is strictly negative. Columns with negative reduced cost

are added to the restricted master which is then solved again. This iterative process

continues until no suitable column is priced from the sub-problem.

The Set Partitioning Formulation, presented in Section II.2, requires enumer-

ating all possible routes which a vehicle can perform. The number of routes grows

exponentially with the number of customers. When only routes that visit exactly

once each customer are considered, the pricing sub-problem corresponds to the Ele-

mentary Shortest Path Problem with Resource Constraints (ESPPRC), where the

resource constraints refer to the use of the capacity of the vehicle regarding the

demand of each customer visited along the route. To avoid the task of solving the

strongly NP-hard ESPPRC problem at each iteration, a relaxation of the route

definition may be considered, including in the SP formulation columns which cor-

respond to routes that visit customers more than once. The pricing problem is then

the Shortest Path Problem with Resource Constraints (SPPRC). Allowing these

multiple visits to customers may weaken significantly the lower bounds obtained

on the linear relaxation of the SP formulation. A way of strengthening the lower

bounds would be to propose forms of controlling the number of additional visits

to each customer in a route. There are two main approaches in the literature to

achieve this objective. The first one aims at eliminating cycles of a given size along

the relaxed routes. The second comes from observing that cycles are more likely to

occur among customers that are close to each other. As a consequence it explores
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this idea by forbidding the relaxed route to return to a customer that belongs to a

neighborhood set of other customers that are close to it. Next section provides more

details of the pricing problem and how the relaxation works, allowing multiple visits

along a route. The following sections are dedicated to the approach that exploits the

idea of avoiding many visits to customers. It reduces to find minimum reduced cost

ng-routes, as these routes are called.

III.1 Pricing
The reduced cost of a column is given by Equation (III.1) where πi denote the

dual variables associated to constraints (II.19) and π0 is the dual variable associated

to constraint (II.20). Thus, the reduced cost of a route is its original cost cr minus

the dual variable π0 and the dual variable πi for each customer i visited by this

route.

cr = cr − π0 −
∑
i∈N

airπi (III.1)

The dual variables associated with each customer can be split equally between

the edge entering and the one leaving the customer. Figure III.1 illustrates this

idea. Therefore, the reduced cost can be rewritten as a function of edges as shown

in Equation (III.2).

depot

c1

c2

𝜋1

𝜋2

𝜋0 +
𝜋1
2

𝜋0 +
𝜋2
2

𝜋1
2
+
𝜋2
2

Figure III.1: Edge’s reduced cost associated to customers’ dual variables

ce = ce − (πu + πv)/2 (III.2)

At start the column generation procedure needs to construct an initial feasible

subset of variables, so that the restricted master can be first solved. The initial set

Ω can be constructed taking one route at time and greedily visiting customer which

has not been visited yet, without exceeding the vehicle capacity. This heuristic can

yield more than |K| routes, however in our experiments it did not occur when using

the classical instances for the problem. The pseudo code to the procedure is shown

in Algorithm III.1.

The general pricing algorithm builds a dynamic programming matrix M of

size (Q + 1) × |N |, where each entry M(q, i) contains the list of all paths which
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Algorithm III.1 Algorithm to generate initial Ω set

1: procedure buildOmega
2: demand← 0
3: routes← |K|
4: V isited← ∅
5: Ω← {}
6: while routes ≥ 0 do
7: newRoute← {}
8: newRoute← newRoute ∪ {0}
9: for v ∈ N do

10: if v /∈ V isited and (demand+ qv ≤ Q) then
11: demand← demand+ qv
12: V isited ∪ {v}
13: newRoute ∪ {v}
14: newRoute← newRoute ∪ {0}
15: route← route ∪ {newRoute}
16: routes← routes− 1

starts at the depot vertex, visits a set of customers and ends at customer i with

cumulative demand q. At the beginning of the algorithm, the matrix is empty

except for entry M(0, 0) which contains one single element representing the path

which has not yet left the depot. The algorithm then fills the matrix iteratively for

each customer from cumulative demand 1 up to Q. On each step, when analyzing

entry M(q, i), all possible extensions to customer i and cumulative demand q are

considered and stored in the matrix. The process terminates when the whole matrix

is filled and the algorithm returns any route with negative reduced cost found on

entries M(q, 0), q ∈ {1, . . . , Q}.
Associated to each path in the matrix, the algorithm stores a label containing

a set of required information. For the general pricing algorithm, the label associated

to a path P is defined as L(P ) = (v(P ), q(P ), N(P ), c̄(P )), where v(P ) is the last

customer of the path, q(P ) is the total demand, N(P ) is the set of visited customers,

and c̄(P ) is the total reduced cost.

Note that the dynamic programming algorithm stores all possible paths from

the depot to each customer without violating the available capacity. Clearly, this

approach is exponential and may be prohibitive for all but some small instances.

The first effort to reduce the number of labels generated by the algorithm is to use a

dominance rule, which discards a dominated label known to provide a reduced cost

no better than a dominant one. Given two labels L(P1) and L(P2), L(P1) dominates

L(P2) if the following conditions hold.

(i) v(P1) = v(P2)

(ii) q(P1) ≤ q(P2)

(iii) N(P1) ⊆ N(P2)
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(iv) c̄(P1) ≤ c̄(P2)

The first three conditions guarantee that path P1 is allowed to perform at least

the same possible paths back to the depot as P2 and the last one guarantees that

any of these completions back to the depot results in a better reduced cost when

taken from P1 than from P2. This concludes that L(P2) is dominated by L(P1).

The goal of the pricing problem presented is to find one or more elementary

routes which do not exceed the vehicle capacity and have negative reduced cost. As

mentioned before, this is an NP-hard problem and for this reason we chose to solve

the SPPRC, for which the time complexity to fill the matrix is O(|N |2Q). The idea

is to keep just the best path on each entry M(q, i). This can be done by using the

recurrence presented in Equation (III.3).
T (qi, i) = c0i

T (D, i) = min
j∈N

T (D − qi, j) + cji,
(III.3)

A first approach to generated relaxed routes was introduced by Christofides,

Mingozzi and Toth [7]. They proposed the so called q-routes. In their work, They

showed that restricting q-routes to forbid 2-cycles does not change the pricing

complexity and it improves the bounds for the SP formulation. Figure III.2

illustrates the generalization of q-routes without k-cycles, where k stands for the

length of a cycle.

1-cycle 0 1 1 1 01 11 …

2-cycle 0 1 2 1 02 21 …

3-cycle 0 1 2 3 01 32 …

k-cycle 0 1 1 01 ……

k-1

…

k-1

…

k-1

Figure III.2: Examples of routes with k-cycles

It is clear that larger values for k improve the lower bounds for the SP

formulation. However, Fukasawa et al. [10] showed that it is not worthy to consider

k > 4, due to its impact over pricing complexity. In fact, k-cycle elimination impacts

the pricing complexity by a factor of k!. Unfortunately, 4-cycle elimination is still not

enough to obtain lower bounds near the ones obtained only considering elementary

routes.
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III.2 Forbidding return to close customer neigh-
bors: ng-Routes

Recently, Baldacci et al. [9] introduced a new approach, called the ng-route

relaxation. The ng-route relaxation also allows a customer to be visited more than

once but instead avoiding cycles of fixed length, it avoids cycles based on memory

sets NGv ⊆ N , associated with each customer v. Knowing that cycles are more

likely to appear in the neighborhood of a given customer v, the memory sets are

usually built using the closest neighbors of each customer. The size of the ng-sets is

represented by ∆(NG) and it is defined a priori. Although larger values for ∆(NG)

yield routes closer to elementarity, they also will impact in the overall complexity of

the pricing.

Let Π(P ) be the customer set replacing the set N(P ) of visited customers in

the labels used by the dynamic programming algorithm. Its meaning is changed to

be the set of visited customers path P remembers so far. Thus, a label can now

be defined as L(P ) = (v(P ), q(P ),Π(P ), c̄(P )). An extension from label L(P ) to a

customer vp+1 can only occurs, if and only if vp+1 /∈ Π(P ) and q(P )+qvp+1 ≤ Q. After

a successful extension, a new label L(P ′) is created for path P ′ = (0, . . . , vp, vp+1)

by the operation presented in Equation (III.4).

L(P ′) = (vp+1, q(P ) + qvp+1 ,Π(P ) ∩Nvp+1 ∪ {vp+1} , c̄(P ) + c̄vpvp+1) (III.4)

Clearly with the introduction of Π(P ), the dominance rule changes. Condition

(iii) presented in Section III.1 now turns into Π(P1) ⊆ Π(P2), meaning that label

L(P1) dominates label L(P2) only when its memory is a subset of L(P2) memory,

i.e. any allowed extension from path P2 can also be made from path P1. This clearly

reinforces the dominance rule based on the fact that, for any path P , Π(P ) ⊆ N(P ),

leading to a reduction on the number of labels.

As showed in Equation (III.4), the memory set Π(P ) is updated at each

extension with the intersection of all ng-sets of all customers previously visited,

united by the current customer. The overall contruction of the memory set is

presented in Equation (III.5). Notice that it is easy to see |Π(P )| ≤ |C(P )|, but even

with this reduction, the size of Π(P ) still has an impact in the pricing complexity.

Π(P ) =

{
ik ∈ C(P ) : ik ∈

P⋂
s=k+1

NGs, k = 1, . . . , p− 1

}
∪ ip (III.5)

To make the extension process clearer, we present two figures. In Figure III.3,

by the time the extension from customer 1 to 2, 1 is forgotten (since 1 /∈ NG2)

and it is available to be revisited immediately or in the next extensions. Figure III.4

presents the opposite situation. Since 3 ∈ NG2, 3 is not allowed to be revisited,

which forbids the extension.
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1

1

1

Π 𝑃 ∩ 𝑁𝐺 1 ∪ {1} = 1

2

2

Π 𝑃 ∩ 𝑁𝐺 2 ∪ {2} = 1 ∩ {2,3} ∪ {2} = {2} *

* Costumer 1 was forgotten

3

1 2 3 1

Π 𝑃 ∩ 𝑁𝐺 3 ∪ 3 = {2} ∩ {1, 3} ∪ {3} = {3}

Π 𝑃 ∩ 𝑁𝐺 1 ∪ 1 = {3} ∩ {1, 2} ∪ {1} = {1}

Figure III.3: Example of an allowed extension. NG(1) = {1, 2} , NG(2) =
{2, 3} , NG(3) = {1, 3}

1

1

1

Π 𝑃 ∩ 𝑁𝐺 1 ∪ {1} = 1

3

3

Π 𝑃 ∩ 𝑁𝐺 3 ∪ {3} = 1 ∩ {1,3} ∪ {3} = {1,3} 

2

1 3 2 3

Π 𝑃 ∩ 𝑁𝐺 2 ∪ 3 = {1,3} ∩ {2, 3} ∪ {3} = {3}

Figure III.4: Example of a forbidden extension. NG(1) = {1, 2} , NG(2) =
{2, 3} , NG(3) = {1, 3}

If a given extension is to the depot, then we successfully build an ng-route.

And from this point, there is no other extensions available. One problem arises with

solving the SPPRC with this route relaxation, the exponential number of labels

that can be generated and stored. The mitigation of this “curse of dimensionality”

is the main concern when build an algorithm to solve the problem. The control

mechanism and the algorithm to solve the problem will be formally introduced in

the next section.

As mentioned previously, the ng-route relaxation improves the pricing problem

by reducing the number of labels stored because of the changes done in the

dominance rule. A label L(P1) dominates another label L(P2) if and only if, every

feasible extensions from P2 can be done with better or equal reduced cost when

taken from P1. Therefore P2 can be removed from the list of labels. It is interesting
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to check whether a label dominates or is dominated, whenever this label is created

and the label list should be ordered by reduced cost for simplicity. Thus, the new

sufficient conditions are:

(i) v(P1) = v(P2)

(ii) q(P1) ≤ q(P2)

(iii) Π(P1) ⊆ Π(P2)

(iv) c(P1) ≤ c(P2)

The dominance rule limits the number of non-dominated label by 2∆(NG)−1 in

each bucket. Considering the whole matrix, there are at most 2∆(NG)−1|N |Q non-

dominated labels in it. This may be reasonable fast depending how large is ∆(NG).

The complete algorithm for the exact version of the pricing problem with

ng-route relaxation is shown in Algorithm III.2.

Algorithm III.2 Exact Pricing

1: procedure exactPricing(M, NG, c)
2: Input: The matrix M, ng-sets NGi ⊆ N,∀i ∈ V and the array of

reduced costs c
3: for q = 1, . . . , Q do
4: for i ∈ V do
5: if q − di > 0 then
6: for j ∈ N do
7: for L(P ′) ∈M(q − di, j) do
8: if i /∈ Π(P ′) then
9: L(P )← (c(P ′) + cij, i, q,Π(P ′) ∩NGi ∪ {i})

10: insertLabel← true
11: for L(P ′′) ∈M(q, i) do
12: if L(P ) dominates L(P ′′) then
13: delete L(P ′′)
14: else if L(P ′′) dominates L(P ) then
15: insertLabel← false
16: break
17: if insertLabel then
18: M(q, i)←M(q, i) ∪ L(P )

Next, we present three techniques to speed up the exact pricing. The first

one is the Decremental State Space Relaxation (DSSR), introduced by Righini and

Salani in [23] for the pricing with elementary routes and further adapted to the

ng-route relaxation by Martinelli et al. [15]. The second one is called the completion

bounds and finally the last one is a heuristic pricing.
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(a) Decremental State-Space Relaxation
The Decremental State-Space Relaxation consists in relaxing totally or par-

tially the ng-route restrictions, allowing the occurrence of some cycles which would

not appear in a regular run of the algorithm (depending on the level of relaxation,

it may allow any cycle to appear). The algorithm then iteratively removes some

relaxations until a feasible ng-route is found. This way, each iteration of the DSSR

pricing sub-problem provides a lower bound on the solution of the original pricing

with the complete ng-sets.

The relaxation is done by using sets Γkv ⊆ NGv, where k is the index of

current iteration of the DSSR algorithm. At first, each Γ0
v may be empty (meaning

that any cycle may happen in the solution) and at each iteration, it checks the best

route found by the pricing algorithm w.r.t. the regular ng-sets NGv. If the best

route found is ng-feasible (or if there is no route with negative reduced cost), the

algorithm stops and return this route (resp. none) and any other ng-feasible route

with negative reduced cost. On the other hand, if the best route violates any ng-set,

it reduces the relaxation by updating Γk+1
u = Γku ∪ {w}, for all customers u ∈ N

present in the forbidden cycle, where w ∈ N is the customer on which the cycle

happens.

The Algorithm III.3 presents a pseudo code to this framework. The exact-

Pricing is the same algorithm showed in III.2 and selectRoutes selects routes with

negative reduced costs.

Algorithm III.3 Decremental State-Space Relaxation

1: procedure DSSR(M, NG)
2: Input: The matrix M, ng-sets NGi ⊆ N,∀i ∈ N
3: Γi ← ∅, ∀i ∈ N, ng ← false, k ← 0
4: while not ng do
5: R← exactPricing(M,Γ)
6: R∗k ← selectRoutes(R)
7: if isNGRoute(R∗k, NG) then
8: ng ← true
9: else

10: updateNGSet(R∗k, NG,Γ)

11: k ← k + 1

12: return R∗k

(b) Completion bounds
The Completion Bounds is another technique devised to speed up the pricing

sub-problem running time. It works within the DSSR and it is similar to the

dominance rule in the sense that it also eliminates labels. Given the fact that at

an iteration of the DSSR algorithm any previous iteration is a relaxation of the
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current one, the dynamic programming matrix of a previous iteration provides valid

lower bounds on the reduced cost values for all the paths. This information may be

used to avoid an extension of a path by checking if its current reduces cost value

plus the lower bound for the remaining path would lead to a non-negative value.

Thus, at the end of each DSSR iteration k, the best lower bound for each customer

v ∈ N with every capacity q ≤ Q is calculated, in order to be used during iteration

k + 1. These lower bounds are then stored in an auxiliary matrix T̂ , which is filled

with the value of the best path that starts at a customer i and ends at the depot

with total capacity at most q. This process is shown in Equation III.6

T̂k(q, i) = min
q′≤q

(T ∗k (q, i)) (III.6)

After the matrix T̂ is filled, its values may be used in the next iteration to

avoid the extension to a new labels L(P ) = (v(P ), q(P ),Π(P ), c̄(P )). A label is

discarded if the following condition hold:

c̄(P ) + c̄ij + T̂ (Q− q(P ), v(P )) ≥ 0 (III.7)

It is clear that when the left-hand side of Equation III.7 is greater or equal

than zero, the label L(P ) cannot generate any routes with negative reduced cost,

and then it may be eliminated. This will make the exact pricing converges faster,

especially because the lower bounds found become stronger on each new iteration

of the DSSR algorithm.

(c) Heuristic Pricing
As a further improvement to speed up the whole column generation procedure,

any heuristic pricing approach may be used before running the exact dynamic

programming algorithm. The idea is to find as many routes with negative reduced

cost as possible using a faster algorithm, thus reducing the number of calls to the

exact algorithm. In this dissertation, we use a simplification of the exact algorithm

described in Section III.1. Instead of maintaining a list of paths in each dynamic

programming matrix M(q, v) entry, we keep only the path with best reduced cost

so far, discarding any other labels which may appear. This modification may seem

quite simple at first, but one may notice that when used, this approach may find

up to 90% of the total columns generated during the column generation, obtaining

a drastic improvement on the overall running time of the solution procedure.

To exemplify how the algorithm works, when we are filling the bucketM(q, i),

if q − di > 0 we have to look at all buckets in row M(q − di, i), looking for those

which may improve the reduced cost and perform a proper extension, with respect to

ng-routes. In other words, we want the best bucket where i /∈ Π(P ). The Algorithm

III.4 shows a pseudo-code for this procedure.

Analogously to the exact pricing algorithm, after running the pricing, a

procedure must be executed to build the best ng-routes found. This procedure will
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Algorithm III.4 Heuristic Pricing

1: procedure heuristicPricing(M, NG, c)
2: Input: The matrix M, ng-sets NGi ⊆ V, ∀i ∈ V and the matrix of

reduced costs c
3: for q = 1, . . . , Q do
4: for i ∈ V do
5: L(P )← (∞, i, q,−)
6: if q − di > 0 then
7: for j ∈ N do
8: L(P ′)←M(q − di, j)
9: if i /∈ Π(P ′) and c(P ′) + cij < c(P ) then

10: L(P )← (c(P ′) + cij, i, q,Π(P ′) ∩NGi ∪ {i})
11: M(q, i)← L(P )

iterate over all buckets of the matrix M, sorting them by its reduced cost and

checking if the reduced cost remains negative when taking the path back to the

depot.

Finally, in order to prove the optimality on the last iteration, a run of the

complete exact pricing still must be performed. This happens because it not all paths

are taken into consideration by the heuristic and there is a chance that feasible routes

with negative reduced cost are not built. Moreover, it is noteworthy to mention

that the complexity of the heuristic pricing compares to the one of the q-route

relaxation, i.e., it is weakly NP-hard, being performed in the pseudo-polynomial

time of O(Q|N |2).
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IV
Cuts

In this chapter we present some cuts to the CVRP. Cuts are used to improve

the lower bounds quality. They can be described as valid inequalities which are

added to the mathematical formulation when violated by the current solution.

The procedure of identification of such violated cuts is called the cut separation

algorithm. When dealing with column generation, we classify the cuts in two types:

robust cuts and strong cuts. Regardless the name, they differ basically in how the

dual variables associated to them can be translated into reduced cost to the pricing.

Robust cuts have the particularity that the contribution of their dual variables to the

computation of the reduced costs of paths can be decomposed along the edges, and

therefore they may be considered in the pricing algorithm without compromising

its performance, regardless of the number of robust cuts added. On the other hand,

strong cuts requires additional resources in the labels, typically one resource per

active cut, which is represented by one additional dimension. Those dimensions are

used to control whether an extension should be reward/penalized with the value of

the dual variable associated to the cut. Therefore, it is straightforward to notice that

with the increase on the number of strong cuts, the pricing loses performance.

During the last 15 years, many different families of both robust and strong

cuts were presented for the CVRP. In this work, we consider one family of robust

cuts, the Capacity Cuts [24], and one family of strong cuts, the Subset-Row Cuts

[20].

IV.1 Capacity Cuts
The Capacity Cuts are a family of robust cuts originated by the generalization

of the famous Sub-tour Elimination Cuts for the TSP. They are similar to the

capacity constraint showed in Equation (II.4). It is know that to calculate r(s)

exactly one needs to solve the Bin Packing Problem which is a strongly NP-hard

problem [22]. However, the inequality remains valid if one replaces r(S) on the

right-hand side with the lower bound k(S) = dq(S)/Qe. Using the relation shown in

Section II.2, when we presented the decomposition of the Two Index Formulation

into the Set Partitioning Formulation, we can state the Rounded Capacity Cuts as

in Equation (IV.1).
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∑
r∈Ω

∑
e∈δ(S)

berλr ≥ 2k(S), S ⊆ N (IV.1)

To separate these cuts, we use the CVRPSEP package, presented in [25].

Moreover, as mentioned earlier, being robust these cuts do not change the pricing

sub-problem complexity. This is due to the possibility of mapping the dual variables

associate to them directly into the edges of the original graph. Thus, using this

mapping, the dual variables may be directly introduced in Equation (III.2).

IV.2 Subset Row Cuts
The Subset-Row Cuts (SRCs) are a family of strong cuts introduced in 2008

by [20] and since then some works have shown they lead to good improvements

on lower bounds values [9, 18]. Their general form is a Chvátal-Gomory Rank-1

Cut, obtained from the Constraints (II.19) of the SP formulation. Given a subset of

customers C ⊆ N and a multiplier p ∈ R, 0 < p < 1, they are shown in Equation

(IV.2).

∑
r∈Ω

⌊
p
∑
i∈C

ari

⌋
λr ≤ bp |C|c (IV.2)

Some results for different choices of (|C|, p)-SRCs are published in the literat-

ure and the (3, 1/2)-SRCs are shown to be the most promising ones. Their definition

is presented in Equation (IV.3).

∑
r∈Ω

⌊
1

2

∑
i∈C

ari

⌋
λr ≤

⌊
3

2

⌋
∑
r∈Ω

⌊
1

2

∑
i∈C

ari

⌋
λr ≤ 1

(IV.3)

Despite their success, the SRCs are still hard to separate (the only known

separation is to enumerate all sets C) and they are also hard to be considered in the

pricing sub-problem. Each new SRC added to the SP formulation introduces a new

resource for the pricing sub-problem. In the case of (3, 1/2)-SRCs, for each cut c ∈ C
(where C is the set of all separated SRCs) there must exist an integer counter src

on each label which is incremented every time the path reaches a customer v ∈ C.

When this counter reaches 2, the dual variable σc associated to the cut must be

subtracted to the path’s current reduced cost value and the counter returns to 0.

In addition to the above modification, the dominance rule described in Section

III.2 must also be changed to consider the reduced cost adjustment. When testing

if a given label L(P1) dominates L(P2), the impact of future contributions of dual

variables σc must be taken into account. Since σc ≤ 0, its introduction represents a

penalization for an extension and this weaken the dominance rule. This means that

when src(P1) > src(P2), in the worst-case the contribution of σc for this SRC may
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occur only for path P1 and the dominance rule must consider this case. Therefore,

the new dominance rule turns into the following:

(i) v(P1) = v(P2)

(ii) q(P1) ≤ q(P2)

(iii) Π(P1) ⊆ Π(P2)

(iv) c̄(P1) ≤ c̄(P2) +
∑

c∈C:src(P1)>src(P2)

σc

IV.3 Limited Memory Subset Row Cut
Recently, a relaxation to the SRCs was introduced by [19] called the Limited

Memory Subset-Row Cuts (lm-SRCs). The intuition is analogous to the ng-route

relaxation. Each customer now has a memory set Mv containing the SRCs it

“remembers”. Thus, every time a path P with src(P ) > 0 reaches a customer with

c /∈ Mv, the path “forgets” the lm-SRC c by setting src(P ) = 0. If we were to

consider an SRC in its original form, it would be the same as adding this cut to the

memory set of all customers.

When creating a new lm-SRC, it may be added to the memory set of any

customer. Nevertheless, there is a subset of customers required to remember the new

lm-SRC for it to be violated by the current solution. These are the ones appearing

from an odd visit to set C until the following visit, on every route considered during

the separation routine and besides the ones already in set C. For example, suppose

C = {1, 2, 3}, r1 = (0, 1, 4, 5, 3, 7, 4, 0), r2 = (0, 8, 2, 8, 6, 2, 8, 0). Let λr1 > 0 and

λr2 > 0 in a way this solution violates a (3, 1/2)-SRC. Considering route r1, at

the moment the customer 1 is visited, the counter of the cut will be incremented.

When visiting customer 3, the counter will be incremented again and the cut will

be added to the memory set of all vertices between 1 and 3. Repeating this process

for the second route, the cut will be added to the memory set Mv of customers

v ∈ {1, 2, 3} ∪ {4, 5} ∪ {8, 6}.
The consequence of the relaxation is that now some routes which were

considered in the original SRC are not considered in the relaxed lm-SRC anymore.

If we define αr(C, p,M) as being the coefficient of a route r on the new lm-SRC,

Equation (IV.4) shows its new definition.∑
r∈Ω

αr(C, p,M)λr ≤ bp |C|c (IV.4)

When M = N the lm-SRC will be exactly as in the SRC and the function αr

will return bp
∑

i∈C a
r
i c. On the other hand, if |M | < |N | the function αr will return

a smaller coefficient for some routes in the inequality. This happens because every

time a route r leaves M , the variable state is reset to zero. So, only vertices in the

memory set will keep the state of the cut. For those which are not in M , the state
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of the cut is zero by definition. It means that the duals variables σs associated to

the cuts will only play a role along extensions among vertices in M .

The main difference between the SRCs and the lm-SRCs is that the new version

only tracks the state of the cuts among a subset of the customers sets and because

of that fewer extensions will be penalized. This makes fewer buckets to be affected

and the dominance will be improved. This can be noticed in practice by a speed up

on the labeling algorithm by a factor Θ(n/Mavg), where Mavg is the average size

of the memory sets. Consequently, more lm-SRCs may be added to the formulation

before the pricing loses performance.

(a) Separation
The first step of the lm-SRCs separation is to identify every subset of customers

C which violate the Equation IV.4. This step can be done enumerating all subsets

of customers of size three. To do that, we consider all λr variables with positive

value from the solution of the restricted master problem and the routes associated

with those variables. Then, we check for each route which triplets had at least two

customer visited. Then, we verify if the left hand side of the Equation (IV.4) would

be larger than one, which consists of a violation. Algorithm IV.1 illustrates how the

separation is done. Let ari keep the same notation as seen before – it represents the

number of times a customer i was visited by route r.

Algorithm IV.1 Algorithm to separate lm-srcs

1: procedure separation(λr, routesInSolution)
2: violations← {}
3: for i ∈ N do
4: for j ∈ N \ {i} do
5: for k ∈ N \ {i, j} do
6: violation ← new Violation
7: for r ∈ routesInSolution do
8: if

∑
c∈C a

r
c > 1 then

9: violation.triplet← {i, j, k}
10: violation.routes← violation.routes ∪ {r}
11: violation.lhs← violation.lhs+ b1

2

∑
c∈C a

r
cλrc

12: if violation.lhs > 1 then
13: violations← violations ∪ violation
14: return violations

Algorithm IV.1 tests if a violation occurs for each possible triplet. Note that

are, in this case,
(
N
3

)
triplets. So it is necessary to keep in mind to not return all

cuts found to the master problem in order to minimize the impact on the pricing.

In this work, we setup the limit of 500 cuts at each time the separation is called.

Knowing which triplets were violated, we now calculate the cut memory M .

This minimal set represents which customers will remember a certain cut during
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the pricing execution. Initially, M = C and the memory set is updated with every

customer between two visits to a vertices in C, as described earlier. This process is

describe in Algorithm IV.2, where we associate a state variable to control the parity

of visits to vertices in the triplet.

Algorithm IV.2 Algorithm to calculate the cut memory

1: procedure calculateM(C, λ, p)
2: M ← C
3: for each route r where λr > 0 and bp

∑
i∈C a

r
i c > 0 do

4: state ← 0, Aux ← ∅
5: for each vertex i in route r (in order) do
6: if i ∈ C then
7: state ← state + p
8: if state ≥ 1 then
9: M ←M ∪ Aux,Aux← ∅, state← state− 1

10: else if state > 0 then
11: Aux← Aux ∪ {i}
12: return M

Finally, we just have to calculate the route coefficients to properly add the

cut into the formulation. This process is done to every route in set Ω, regardless its

solution value, even if it is zero. As mentioned previously, the route coefficient in

the lm-SRC will be smaller or equal to one in SRC. Algorithm IV.3 shows how to

calculate these coefficients.

Algorithm IV.3 Algorithm to calculate the coefficient of a route within a cut

1: procedure CalculateAlpha(C,M, p, r)
2: coef ← 0, state← 0
3: for each vertex v in route r (in order) do
4: if i /∈M then
5: state← 0
6: else if i ∈ C then
7: state← state+ p
8: if state ≥ 1 then
9: coef ← coef + 1, state← state− 1

10: return coef

(b) Pricing changes
Here is where the lm-SRC shows its effectiveness when comparing with regular

SRC. Both families of cuts add a new resource to the label to track the state of each

active cut. Therefore, the labels becomes L(P ) = (c(P ), v(P ), q(P ),Π(P ), src(P ))

where src(P ) is the vector of states corresponding to nS lm-SRCs with non-zero

duals variables in the current master LP solution.
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Since σc < 0, the consideration of a SRC represents a penalization for one

extension and this weakens the dominance rule. In fact, the dominance rule presented

in Section IV.2 remains the same, but now, as the pricing “forgets” some lm-SRCs,

condition (iv) of the dominance rule will be strengthened.

Another change in the pricing is when performing an extension j → i, we have

to check each lm-SRC c that j remembers, if i ∈M(c). If that is not the case, c will

be forgotten, which means that the state variable of the cut will be set as zero. On

the other hand if i ∈M(c), i ∈ C(c) and state ≥ 1 then the dual variable σc should

penalize this extension. To illustrate the idea, we present Algorithm IV.4

Algorithm IV.4 Exact Pricing

1: procedure exactPricingSRC(M, NG, c, s)
2: Input: The matrixM, ng-sets NGi ⊆ N,∀i ∈ V , the array of reduced

costs c and s vector with actives lm-SRC
3: for q = 1, . . . , Q do
4: for i ∈ V do
5: if q − di > 0 then
6: for j ∈ N do
7: for L(P ′) ∈M(q − di, j) do
8: if i /∈ Π(P ′) then
9: c(P )← c(P ′) + cij

10: S(P ) = S(P ′)
11: for c = 1 to ns do
12: if i /∈M(c) then
13: src(P )← 0
14: else if i ∈ C(c) then
15: src(P )← src(P ) + 1
16: if src(P ) ≥ 1 then
17: c(P )← c(P )− σc
18: src(P )← src(P )− 1

19: L(P )← (c(P ′) + cij, i, q,Π(P ′)∩Ni ∪{i} , src(P ))
20: insertLabel← true
21: for L(P ′′) ∈M(q, i) do
22: if L(P ) dominates L(P ′′) then
23: delete L(P ′′)
24: else if L(P ′′) dominates L(P ) then
25: insertLabel← false
26: break
27: if insertLabel then
28: M(q, i)←M(q, i) ∪ L(P )
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V
Computational Experiments

In this chapter we report a detailed computational experiment for a large set

of CVRP instances, comparing the leverage obtained with the lm-SRC combined

with the techniques presented in this thesis. Furthermore, we present a comparison

between the bounds found by our approaches and those found by Pecin et al. [19].

For our computational experiments, we use the standard classes of instances (A, B,

E, M, and P) available at CVRPLib (http://vrp.galgos.inf.puc-rio.br).

The algorithms were implemented in C++, using Microsoft Visual Studio

2013 and Gurobi 6.5 [26]. The experiments were conducted on a Intel Core i7-3960X

3.30GHz with 64GB RAM running Linux Ubuntu Server 14.04.

We start presenting the comparison between a simple version using only the

Set Partitioning Formulation, ng-routes and the additional lm-src. We setup the size

of the ng-sets to be 8 for all tests. The results are presented in Table V.1. Columns

Routes represent the number of routes that were generated during the process,

columns Heu and Exa show the amount of time spent by the heuristic pricing and

the exact pricing, respectively. Column Sep shows the total number of separated

lm-SRCs and column Act shows the number of lm-SRCs which were active in the

last resolution of the formulation. In order to keep the formulation more compact,

after running the heuristic pricing, if any lm-SRC was not active, we remove it from

the formulation. Lines with dash instead of values reached the time limit that we

setup as 2 hours. At the end of each table, we calculate the average of each column

for those instances that had finished in both configuration, with and without the

consideration of the lm-SRC.

Other strategies were used in the attempt to improve the running time. We

limited the number of routes that can be returned by the pricing in 20. As said before,

we also limited the number of strong cuts that are added into the formulation at

each iteration to be at most 500. Finally, we tried to minimize the number of runs

of the exact pricing. To do that, first we run the heuristic pricing until no routes are

found, then we separate the cuts and if no cuts were found we run the exact pricing.

Looking closer to Table V.1, we can immediately see the power of the lm-SRC.

The number of instances which was equal to the known lower bound increased from

2 to 25, however the number of instances which do not finished within the two hour

time limit was 21 out of 93 instances tested and the elapsed time of the remaining

instances increased significantly.
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In Table V.2 we show the results of the comparison of a version using ng-

routes with DSSR to the one with the addition of the lm-SRCs. The number of

instances which reached the known lower bound was the same, however the number

of instances that were timed out decreased from 25 to 21. In this test we used the

DSSR technique as presented in Section III.2(a).

The following test combined ng-routes, DSSR and Completion Bounds and

compares the results with and without lm-SRCs. They are presented in Table V.3.

In this test, we did not notice any relevant changes from the one only considering

DSSR.

In Table V.4 we combine ng-routes with the Capacity Cuts, presented in

Section IV.1. Capacity cuts had a great role, increasing the number of instances

that reached the known lower bound to 18. Combining them with the lm-SRCs also

showed a great improvement and the instances that reached the known lower bound

were increased to 53 and the number of instances timed out decrease to 7.

Finally, we tested the combination of all techniques presented in this thesis

with the addition of lm-SRCs. In Table V.5 we show the results that we found. In

this test, we saw the number of instances that reached the knwon lower bound to

remain the same as those tested with only the Capacity Cuts, with and without the

lm-SRCs. We also show the comparison with the lower bound found by Pecin et al.

[19]. These results are presented in Table V.6.
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Table V.1: Comparison over a pure version

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n32-k5 784 770.286 0.872 999 60 3 784 17.764 1713 117 7 458 33

A-n33-k5 661 653.727 0.42 771 46 2 661 1.584 933 64 3 478 29

A-n33-k6 742 732.1 0.383 791 46 2 738.333 2.012 1047 100 4 863 27

A-n34-k5 778 746.012 0.475 885 48 1 767.117 12.109 1756 173 6 1392 83

A-n36-k5 799 776.276 0.797 1230 71 2 796.5 1999.12 2537 200 11 2644 84

A-n37-k5 669 657.811 1.139 1504 82 3 669 15.381 2340 159 4 1224 30

A-n37-k6 949 925.407 0.473 900 50 2 939.488 8.057 1462 169 6 1528 60

A-n38-k5 730 695.417 0.696 1027 57 3 726.273 14.34 1798 139 5 2050 59

A-n39-k5 822 799.842 1.066 1328 78 4 817.102 82.229 2199 198 8 2219 117

A-n39-k6 831 806.672 0.866 1209 68 3 827.473 216.208 2402 292 10 2694 128

A-n44-k6 937 926.641 0.711 1082 59 2 933.914 8.797 1516 165 5 1978 79

A-n45-k6 944 927.25 0.941 1276 71 2 944 7.607 1743 114 5 1000 46

A-n45-k7 1146 1124.67 0.739 1228 66 1 1133.05 4.277 1556 141 3 1452 58

A-n46-k7 914 904.626 1.107 1484 79 2 914 4.777 1814 106 5 495 39

A-n48-k7 1073 1053.08 1.209 1308 73 3 1073 7.925 1669 111 6 1000 48

A-n53-k7 1010 992.378 2.395 2151 119 3 — — — — — — —

A-n54-k7 1167 1137.06 1.489 1522 82 3 1159.6 59.922 2695 253 9 3199 127

A-n55-k9 1073 1059.03 1.151 1366 72 3 1070.67 11.189 2069 178 6 3816 81

A-n60-k9 1354 1323.32 1.726 1816 94 2 1339.03 31.824 2824 243 7 4288 139

A-n61-k9 1034 1010.24 1.418 1537 84 2 1031.33 33.25 2439 244 8 3273 136

A-n62-k8 1288 1250.24 3.093 2184 118 5 1274.37 53.241 3322 307 9 6054 129

A-n63-k10 1314 1286.58 1.944 1798 94 3 1299.6 18.276 2676 201 6 3067 84

Continued on next page
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Table V.1: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n63-k9 1616 1579.13 1.463 1547 81 2 1602.61 46.092 2731 265 7 3903 140

A-n64-k9 1401 1368.24 2.212 1924 105 3 1391.02 2753.64 3247 275 9 4228 128

A-n65-k9 1174 1147.33 1.76 1784 94 2 1169.43 47.386 3163 307 7 4399 146

A-n69-k9 1159 1129.97 2.85 2190 118 3 1150.53 68.922 3324 258 8 3129 147

A-n80-k10 1763 1729.81 4.969 2977 155 3 1748.09 715.984 4633 412 9 5872 176

B-n45-k5 751 688.901 2.407 1846 103 4 — — — — — — —

B-n41-k6 829 797.722 0.638 889 50 2 814.604 13.529 1439 160 7 2574 102

B-n39-k5 549 521.071 1.988 1407 86 6 — — — — — — —

B-n38-k6 805 741.634 0.947 1075 64 2 — — — — — — —

B-n35-k5 955 868.083 0.963 1176 70 3 926.018 345.894 3414 382 14 2353 136

B-n34-k5 788 755.231 0.996 1209 72 5 773.636 50.469 2179 220 11 2991 98

B-n31-k5 672 661.207 0.411 774 44 2 666.191 5.649 1207 121 6 1309 56

B-n57-k7 1153 1126.77 2.604 1881 99 4 — — — — — — —

B-n56-k7 707 635.601 3.727 1830 111 7 — — — — — — —

B-n52-k7 747 687.348 2.168 1601 95 5 — — — — — — —

B-n51-k7 1032 964.287 1.682 1351 74 4 — — — — — — —

B-n50-k8 1312 1266.45 1.905 1188 70 4 1282.79 38.627 1753 207 9 3178 111

B-n50-k7 741 690.528 1.83 1570 89 2 — — — — — — —

B-n45-k6 678 652.65 1.413 1043 65 4 666.834 50.152 1912 254 7 4386 130

B-n44-k7 909 865.181 0.738 991 55 2 880.067 568.848 2098 255 10 2892 131

B-n43-k6 742 703.674 1.048 1142 63 3 723.319 515.204 3149 353 15 3748 152

B-n78-k10 1221 1166.73 4.913 2689 141 3 — — — — — — —

B-n68-k9 1272 1198.2 3.135 2249 120 2 — — — — — — —

Continued on next page
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Table V.1: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

B-n67-k10 1032 999.204 2.455 2113 111 2 1028.42 146.339 3684 310 11 4632 132

B-n66-k9 1316 1257.22 2.862 2077 111 4 — — — — — — —

B-n64-k9 861 808.253 2.777 1959 105 3 — — — — — — —

B-n57-k9 1598 1571.99 1.681 1550 85 3 1592.7 52.658 2707 219 7 2768 123

B-n63-k10 1496 1456.86 1.608 1634 88 2 1496 330.42 3381 294 11 3615 121

E-n76-k8 735 717.819 4.774 2680 140 2 732.929 297.045 4775 408 9 4048 195

E-n76-k7 682 664.202 8.047 3176 171 3 — — — — — — —

E-n76-k14 1021 1001.85 1.18 1288 67 2 1014.75 7.432 1627 145 4 1363 106

E-n76-k10 830 811.767 2.258 1903 98 1 825.787 28.103 2774 211 4 2535 160

E-n51-k5 521 517.135 1.991 1703 92 2 521 9.098 2008 128 5 500 32

E-n33-k4 835 820.918 3.153 1351 76 3 831.484 74.362 2611 212 5 1597 84

E-n30-k3 534 478.709 1.448 1339 89 3 — — — — — — —

E-n23-k3 569 564.413 5.989 944 68 2 569 12.535 977 87 2 706 8

E-n22-k4 375 373.875 0.095 357 23 1 375 0.112 361 25 1 86 3

E-n101-k8 815 789.372 16.688 4694 243 3 — — — — — — —

E-n101-k14 1067 1047.2 5.102 2889 147 2 1061.12 62.95 4028 291 6 3909 211

E-n31-k7 379 378 0.486 1015 59 1 379 0.613 1037 65 1 126 8

E-n13-k4 247 247 0.014 73 10 1 247 0.014 73 10 1 0 0

P-n55-k10 694 680.06 0.656 1023 55 1 689.193 5.335 1367 147 3 1224 100

P-n23-k8 529 529 0.016 563 4 1 529 0.016 563 4 1 0 0

P-n50-k10 696 687.347 0.461 812 45 2 694.223 1.435 969 84 2 433 53

P-n45-k5 510 502.349 1.253 1506 82 1 510 12.715 2234 145 4 1175 50

P-n40-k5 458 452.5 0.864 1294 68 1 458 4.648 1633 105 4 583 28

Continued on next page
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Table V.1: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

P-n22-k8 603 601.25 0.021 146 11 1 603 0.036 155 16 2 16 3

P-n22-k2 216 214.5 0.592 883 64 2 216 1.356 1015 83 3 130 5

P-n21-k2 211 210.556 0.366 670 52 1 211 0.522 674 54 1 235 8

P-n20-k2 216 210 0.295 592 47 1 216 1.874 784 77 4 240 13

P-n19-k2 212 209.714 0.275 405 39 3 212 1.416 527 57 5 131 13

P-n16-k8 450 443.667 0.01 59 8 1 450 0.012 61 10 1 5 4

P-n101-k4 681 669.044 111.742 9909 577 9 — — — — — — —

P-n76-k5 627 614.86 16.051 4303 230 5 — — — — — — —

P-n76-k4 593 586.502 27.43 4929 286 7 593 963.096 7437 536 14 3500 73

P-n70-k10 827 809.29 1.522 1581 82 1 823.067 20.438 2358 196 4 2300 155

P-n65-k10 792 783.126 1.294 1334 70 2 792 5.995 1741 112 3 1338 89

P-n60-k15 968 959.606 0.34 784 40 1 967.465 1.098 898 75 2 504 55

P-n60-k10 744 736.528 1.052 1123 61 3 743.094 5.236 1577 119 3 1278 70

P-n55-k7 568 555.362 1.456 1518 80 1 564.192 45.85 2559 198 6 1929 118

P-n55-k15 989 968.361 7.423 162367 6 1 984.457 39.94 162450 38 2 378 53

P-n51-k10 741 732.955 0.383 830 43 1 740.778 1.973 1121 101 3 853 52

P-n50-k8 631 614.641 0.456 796 39 1 625.061 7.783 1249 125 4 1146 126

P-n50-k7 554 545.399 0.881 1222 63 1 554 7.805 1638 110 4 1063 63

M-n151-k12 1015 995.728 46.443 7398 381 4 1009.65 5099.56 11653 927 18 13943 349

M-n121-k7 1034 1026.37 62.187 6878 364 9 — — — — — — —

M-n101-k10 820 818.367 13.344 4644 251 12 820 77.95 6196 427 19 7434 15

M-n200-k16 1274 1250.23 135.503 9450 481 5 — — — — — — —

Continued on next page
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Table V.1: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

M-n200-k17 1275 1252.52 135.413 9590 489 5 — — — — — — —

Average 839.271 820.654 2.596 3743.686 78.3 2.357 833.905 216.544 4538.014 189.914 6.157 2226.529 84.957
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Table V.2: Comparison using DSSR

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n32-k5 784 770.286 0.818 999 60 3 784 17.836 1713 117 7 458 33

A-n33-k5 661 653.727 0.394 771 46 2 661 1.638 933 64 3 478 29

A-n33-k6 742 732.1 0.378 791 46 2 738.333 2.038 1047 100 4 863 27

A-n34-k5 778 746.012 0.477 885 48 1 767.117 12.45 1756 173 6 1392 83

A-n36-k5 799 776.276 0.842 1230 71 2 796.5 1999.4 2537 200 11 2644 84

A-n37-k5 669 657.811 1.131 1504 82 3 669 15.443 2340 159 4 1224 30

A-n37-k6 949 925.407 0.509 900 50 2 939.488 8.064 1462 169 6 1528 60

A-n38-k5 730 695.417 0.687 1027 57 3 726.273 14.387 1798 139 5 2050 59

A-n39-k5 822 799.842 1.074 1328 78 4 817.102 82.032 2199 198 8 2219 117

A-n39-k6 831 806.672 0.904 1209 68 3 827.473 215.688 2402 292 10 2694 128

A-n44-k6 937 926.641 0.712 1082 59 2 933.914 8.853 1516 165 5 1978 79

A-n45-k6 944 927.25 0.937 1276 71 2 944 7.578 1743 114 5 1000 46

A-n45-k7 1146 1124.67 0.793 1228 66 1 1133.05 4.278 1556 141 3 1452 58

A-n46-k7 914 904.626 1.112 1484 79 2 914 4.848 1814 106 5 495 39

A-n48-k7 1073 1053.08 1.156 1308 73 3 1073 8.018 1669 111 6 1000 48

A-n53-k7 1010 992.378 2.359 2151 119 3 — — — — — — —

A-n54-k7 1167 1137.06 1.481 1522 82 3 1159.6 58.701 2695 253 9 3199 127

A-n55-k9 1073 1059.03 1.157 1366 72 3 1070.67 11.024 2069 178 6 3816 81

A-n60-k9 1354 1323.32 1.768 1816 94 2 1339.03 31.858 2824 243 7 4288 139

A-n61-k9 1034 1010.24 1.432 1537 84 2 1031.33 32.755 2439 244 8 3273 136

A-n62-k8 1288 1250.24 3.108 2184 118 5 1274.37 53.001 3322 307 9 6054 129

A-n63-k10 1314 1286.58 1.929 1798 94 3 1299.6 18.121 2676 201 6 3067 84

Continued on next page
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Table V.2: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n63-k9 1616 1579.13 1.466 1547 81 2 1602.61 46.184 2731 265 7 3903 140

A-n64-k9 1401 1368.24 2.215 1924 105 3 1391.02 2754.31 3247 275 9 4228 128

A-n65-k9 1174 1147.33 1.763 1784 94 2 1169.43 48.613 3163 307 7 4399 146

A-n69-k9 1159 1129.97 2.867 2190 118 3 1150.53 69.044 3324 258 8 3129 147

A-n80-k10 1763 1729.81 4.966 2977 155 3 1748.09 716.846 4633 412 9 5872 176

B-n45-k5 751 688.901 2.305 1846 103 4 — — — — — — —

B-n41-k6 829 797.722 0.577 889 50 2 814.604 13.524 1439 160 7 2574 102

B-n39-k5 549 521.071 1.993 1407 86 6 — — — — — — —

B-n38-k6 805 741.634 0.981 1075 64 2 — — — — — — —

B-n35-k5 955 868.083 0.943 1176 70 3 926.018 345.301 3414 382 14 2353 136

B-n34-k5 788 755.231 0.981 1209 72 5 773.636 50.205 2179 220 11 2991 98

B-n31-k5 672 661.207 0.393 774 44 2 666.191 5.652 1207 121 6 1309 56

B-n57-k7 1153 1126.77 2.619 1881 99 4 — — — — — — —

B-n56-k7 707 635.601 3.687 1830 111 7 — — — — — — —

B-n52-k7 747 687.348 2.427 1601 95 5 — — — — — — —

B-n51-k7 1032 964.287 1.581 1351 74 4 — — — — — — —

B-n50-k8 1312 1266.45 1.592 1188 70 4 1282.79 38.502 1753 207 9 3178 111

B-n50-k7 741 690.528 1.977 1570 89 2 — — — — — — —

B-n45-k6 678 652.65 1.584 1043 65 4 666.834 49.616 1912 254 7 4386 130

B-n44-k7 909 865.181 0.783 991 55 2 880.067 567.824 2098 255 10 2892 131

B-n43-k6 742 703.674 1.116 1142 63 3 723.319 514.972 3149 353 15 3748 152

B-n78-k10 1221 1166.73 5.038 2689 141 3 — — — — — — —

B-n68-k9 1272 1198.2 3.129 2249 120 2 — — — — — — —

Continued on next page
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Table V.2: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

B-n67-k10 1032 999.204 2.453 2113 111 2 1028.42 147.802 3684 310 11 4632 132

B-n66-k9 1316 1257.22 2.845 2077 111 4 — — — — — — —

B-n64-k9 861 808.253 2.621 1959 105 3 — — — — — — —

B-n57-k9 1598 1571.99 1.676 1550 85 3 1592.7 51.958 2707 219 7 2768 123

B-n63-k10 1496 1456.86 1.581 1634 88 2 1496 330.134 3381 294 11 3615 121

E-n76-k8 735 717.819 4.764 2680 140 2 732.929 299.893 4775 408 9 4048 195

E-n76-k7 682 664.202 8.066 3176 171 3 — — — — — — —

E-n76-k14 1021 1001.85 1.176 1288 67 2 1014.75 7.488 1627 145 4 1363 106

E-n76-k10 830 811.767 2.248 1903 98 1 825.787 27.888 2774 211 4 2535 160

E-n51-k5 521 517.135 1.966 1703 92 2 521 9.046 2008 128 5 500 32

E-n33-k4 835 820.918 3.147 1351 76 3 831.484 75.211 2611 212 5 1597 84

E-n30-k3 534 478.709 1.457 1339 89 3 — — — — — — —

E-n23-k3 569 564.413 5.968 944 68 2 569 12.716 977 87 2 706 8

E-n22-k4 375 373.875 0.093 357 23 1 375 0.112 361 25 1 86 3

E-n101-k8 815 789.372 16.878 4694 243 3 — — — — — — —

E-n101-k14 1067 1047.2 5.086 2889 147 2 1061.12 62.59 4028 291 6 3909 211

E-n31-k7 379 378 0.491 1015 59 1 379 0.616 1037 65 1 126 8

E-n13-k4 247 247 0.014 73 10 1 247 0.014 73 10 1 0 0

P-n55-k10 694 680.06 0.646 1023 55 1 689.193 5.283 1367 147 3 1224 100

P-n23-k8 529 529 0.017 563 4 1 529 0.016 563 4 1 0 0

P-n50-k10 696 687.347 0.46 812 45 2 694.223 1.427 969 84 2 433 53

P-n45-k5 510 502.349 1.256 1506 82 1 510 12.781 2234 145 4 1175 50

P-n40-k5 458 452.5 0.858 1294 68 1 458 4.629 1633 105 4 583 28

Continued on next page
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Table V.2: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

P-n22-k8 603 601.25 0.02 146 11 1 603 0.033 155 16 2 16 3

P-n22-k2 216 214.5 0.582 883 64 2 216 1.367 1015 83 3 130 5

P-n21-k2 211 210.556 0.367 670 52 1 211 0.524 674 54 1 235 8

P-n20-k2 216 210 0.297 592 47 1 216 1.829 784 77 4 240 13

P-n19-k2 212 209.714 0.275 405 39 3 212 1.416 527 57 5 131 13

P-n16-k8 450 443.667 0.016 59 8 1 450 0.012 61 10 1 5 4

P-n101-k4 681 669.044 112.183 9909 577 9 — — — — — — —

P-n76-k5 627 614.86 16.071 4303 230 5 — — — — — — —

P-n76-k4 593 586.502 27.423 4929 286 7 593 946.706 7437 536 14 3500 73

P-n70-k10 827 809.29 1.576 1581 82 1 823.067 20.964 2358 196 4 2300 155

P-n65-k10 792 783.126 1.291 1334 70 2 792 6.037 1741 112 3 1338 89

P-n60-k15 968 959.606 0.34 784 40 1 967.465 1.099 898 75 2 504 55

P-n60-k10 744 736.528 1.05 1123 61 3 743.094 5.182 1577 119 3 1278 70

P-n55-k7 568 555.362 1.458 1518 80 1 564.192 45.917 2559 198 6 1929 118

P-n55-k15 989 968.361 7.578 162367 6 1 984.457 39.951 162450 38 2 378 53

P-n51-k10 741 732.955 0.385 830 43 1 740.778 2.039 1121 101 3 853 52

P-n50-k8 631 614.641 0.458 796 39 1 625.061 7.728 1249 125 4 1146 126

P-n50-k7 554 545.399 0.882 1222 63 1 554 7.806 1638 110 4 1063 63

M-n151-k12 1015 995.728 46.326 7398 381 4 1009.65 5098.44 11653 927 18 13943 349

M-n121-k7 1034 1026.37 62.104 6878 364 9 — — — — — — —

M-n101-k10 820 818.367 12.802 4644 251 12 820 75.618 6196 427 19 7434 15

M-n200-k16 1274 1250.23 134.12 9450 481 5 — — — — — — —

Continued on next page
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Table V.2: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

M-n200-k17 1275 1252.52 136.099 9590 489 5 — — — — — — —

Average 839.271 820.654 2.587 3743.686 78.3 2.357 833.905 216.298 4538.014 189.914 6.157 2226.529 84.957
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Table V.3: DSSR + CB

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n32-k5 784 770.286 0.848 999 60 3 784 16.215 1713 117 7 458 33

A-n33-k5 661 653.727 0.418 771 46 2 661 1.684 933 64 3 478 29

A-n33-k6 742 732.1 0.37 791 46 2 738.333 1.922 1047 100 4 863 27

A-n34-k5 778 746.012 0.484 885 48 1 767.117 12.114 1756 173 6 1392 83

A-n36-k5 799 776.276 0.844 1230 71 2 796.5 1999.7 2537 200 11 2644 84

A-n37-k5 669 657.811 1.143 1504 82 3 669 15.357 2340 159 4 1224 30

A-n37-k6 949 925.407 0.473 900 50 2 939.488 8.104 1462 169 6 1528 60

A-n38-k5 730 695.417 0.687 1027 57 3 726.273 14.442 1798 139 5 2050 59

A-n39-k5 822 799.842 1.071 1328 78 4 817.102 81.826 2199 198 8 2219 117

A-n39-k6 831 806.672 0.864 1209 68 3 827.473 216.221 2402 292 10 2694 128

A-n44-k6 937 926.641 0.712 1082 59 2 933.914 8.862 1516 165 5 1978 79

A-n45-k6 944 927.25 0.992 1276 71 2 944 7.597 1743 114 5 1000 46

A-n45-k7 1146 1124.67 0.738 1228 66 1 1133.05 4.276 1556 141 3 1452 58

A-n46-k7 914 904.626 1.105 1484 79 2 914 4.797 1814 106 5 495 39

A-n48-k7 1073 1053.08 1.145 1308 73 3 1073 7.932 1669 111 6 1000 48

A-n53-k7 1010 992.378 2.365 2151 119 3 — — — — — — —

A-n54-k7 1167 1137.06 1.518 1522 82 3 1159.6 59.182 2695 253 9 3199 127

A-n55-k9 1073 1059.03 1.202 1366 72 3 1070.67 11.157 2069 178 6 3816 81

A-n60-k9 1354 1323.32 1.738 1816 94 2 1339.03 31.832 2824 243 7 4288 139

A-n61-k9 1034 1010.24 1.432 1537 84 2 1031.33 33.241 2439 244 8 3273 136

A-n62-k8 1288 1250.24 3.113 2184 118 5 1274.37 53.084 3322 307 9 6054 129

A-n63-k10 1314 1286.58 2.257 1798 94 3 1299.6 18.253 2676 201 6 3067 84

Continued on next page
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Table V.3: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n63-k9 1616 1579.13 1.473 1547 81 2 1602.61 46.1 2731 265 7 3903 140

A-n64-k9 1401 1368.24 2.216 1924 105 3 1391.02 2753.11 3247 275 9 4228 128

A-n65-k9 1174 1147.33 1.757 1784 94 2 1169.43 48.122 3163 307 7 4399 146

A-n69-k9 1159 1129.97 2.882 2190 118 3 1150.53 70.723 3324 258 8 3129 147

A-n80-k10 1763 1729.81 4.944 2977 155 3 1748.09 714.275 4633 412 9 5872 176

B-n45-k5 751 688.901 2.394 1846 103 4 — — — — — — —

B-n41-k6 829 797.722 0.585 889 50 2 814.604 13.646 1439 160 7 2574 102

B-n39-k5 549 521.071 2.027 1407 86 6 — — — — — — —

B-n38-k6 805 741.634 0.924 1075 64 2 — — — — — — —

B-n35-k5 955 868.083 0.943 1176 70 3 926.018 345.966 3414 382 14 2353 136

B-n34-k5 788 755.231 0.988 1209 72 5 773.636 50.094 2179 220 11 2991 98

B-n31-k5 672 661.207 0.395 774 44 2 666.191 5.694 1207 121 6 1309 56

B-n57-k7 1153 1126.77 2.641 1881 99 4 — — — — — — —

B-n56-k7 707 635.601 3.472 1830 111 7 — — — — — — —

B-n52-k7 747 687.348 2.379 1601 95 5 — — — — — — —

B-n51-k7 1032 964.287 1.574 1351 74 4 — — — — — — —

B-n50-k8 1312 1266.45 1.629 1188 70 4 1282.79 39.079 1753 207 9 3178 111

B-n50-k7 741 690.528 2.067 1570 89 2 — — — — — — —

B-n45-k6 678 652.65 1.499 1043 65 4 666.834 50.453 1912 254 7 4386 130

B-n44-k7 909 865.181 0.712 991 55 2 880.067 568.004 2098 255 10 2892 131

B-n43-k6 742 703.674 1.029 1142 63 3 723.319 515.07 3149 353 15 3748 152

B-n78-k10 1221 1166.73 4.469 2689 141 3 — — — — — — —

B-n68-k9 1272 1198.2 3.112 2249 120 2 — — — — — — —

Continued on next page
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Table V.3: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

B-n67-k10 1032 999.204 2.462 2113 111 2 1028.42 148.288 3526 319 12 6814 135

B-n66-k9 1316 1257.22 3.108 2077 111 4 — — — — — — —

B-n64-k9 861 808.253 2.762 1959 105 3 — — — — — — —

B-n57-k9 1598 1571.99 1.688 1550 85 3 1592.7 51.932 2707 219 7 2768 123

B-n63-k10 1496 1456.86 1.616 1634 88 2 1496 331.582 3381 294 11 3615 121

E-n76-k8 735 717.819 4.774 2680 140 2 732.929 297.473 4775 408 9 4048 195

E-n76-k7 682 664.202 8.118 3176 171 3 — — — — — — —

E-n76-k14 1021 1001.85 1.181 1288 67 2 1014.75 7.496 1627 145 4 1363 106

E-n76-k10 830 811.767 2.25 1903 98 1 825.787 28.129 2774 211 4 2535 160

E-n51-k5 521 517.135 1.971 1703 92 2 521 9.013 2008 128 5 500 32

E-n33-k4 835 820.918 3.131 1351 76 3 831.484 74.101 2611 212 5 1597 84

E-n30-k3 534 478.709 1.442 1339 89 3 — — — — — — —

E-n23-k3 569 564.413 5.998 944 68 2 569 12.521 977 87 2 706 8

E-n22-k4 375 373.875 0.093 357 23 1 375 0.112 361 25 1 86 3

E-n101-k8 815 789.372 16.902 4694 243 3 — — — — — — —

E-n101-k14 1067 1047.2 5.055 2889 147 2 1061.12 62.618 4028 291 6 3909 211

E-n31-k7 379 378 0.488 1015 59 1 379 0.613 1037 65 1 126 8

E-n13-k4 247 247 0.014 73 10 1 247 0.014 73 10 1 0 0

P-n55-k10 694 680.06 0.642 1023 55 1 689.193 5.284 1367 147 3 1224 100

P-n23-k8 529 529 0.016 563 4 1 529 0.018 563 4 1 0 0

P-n50-k10 696 687.347 0.49 812 45 2 694.223 1.42 969 84 2 433 53

P-n45-k5 510 502.349 1.257 1506 82 1 510 12.716 2234 145 4 1175 50

P-n40-k5 458 452.5 0.865 1294 68 1 458 4.621 1633 105 4 583 28

Continued on next page
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Table V.3: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

P-n22-k8 603 601.25 0.078 146 11 1 603 0.033 155 16 2 16 3

P-n22-k2 216 214.5 0.585 883 64 2 216 1.415 1015 83 3 130 5

P-n21-k2 211 210.556 0.366 670 52 1 211 0.52 674 54 1 235 8

P-n20-k2 216 210 0.295 592 47 1 216 1.841 784 77 4 240 13

P-n19-k2 212 209.714 0.276 405 39 3 212 1.413 527 57 5 131 13

P-n16-k8 450 443.667 0.009 59 8 1 450 0.012 61 10 1 5 4

P-n101-k4 681 669.044 112.751 9909 577 9 — — — — — — —

P-n76-k5 627 614.86 16.081 4303 230 5 — — — — — — —

P-n76-k4 593 586.502 27.378 4929 286 7 593 948.867 7437 536 14 3500 73

P-n70-k10 827 809.29 1.531 1581 82 1 823.067 20.875 2358 196 4 2300 155

P-n65-k10 792 783.126 1.315 1334 70 2 792 5.993 1741 112 3 1338 89

P-n60-k15 968 959.606 0.34 784 40 1 967.465 1.169 898 75 2 504 55

P-n60-k10 744 736.528 1.051 1123 61 3 743.094 5.274 1577 119 3 1278 70

P-n55-k7 568 555.362 1.513 1518 80 1 564.192 45.879 2559 198 6 1929 118

P-n55-k15 989 968.361 7.48 162367 6 1 984.457 40.139 162450 38 2 378 53

P-n51-k10 741 732.955 0.382 830 43 1 740.778 1.989 1121 101 3 853 52

P-n50-k8 631 614.641 0.457 796 39 1 625.061 7.711 1249 125 4 1146 126

P-n50-k7 554 545.399 0.881 1222 63 1 554 7.828 1638 110 4 1063 63

M-n151-k12 1015 995.728 46.381 7398 381 4 1009.65 5094.99 11653 927 18 13943 349

M-n121-k7 1034 1026.37 61.983 6878 364 9 — — — — — — —

M-n101-k10 820 818.367 12.905 4644 251 12 820 75.75 6196 427 19 7434 15

M-n200-k16 1274 1250.23 133.6 9450 481 5 — — — — — — —

Continued on next page
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Table V.3: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

M-n200-k17 1275 1252.52 134.934 9590 489 5 — — — — — — —

Average 839.271 820.654 2.592 3743.686 78.3 2.357 833.905 216.254 4535.757 190.043 6.171 2257.7 85
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Table V.4: Capacity Cuts

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n32-k5 784 784 1.536 1185 87 3 784 1.428 1185 87 3 0 0

A-n33-k5 661 661 0.555 823 56 2 661 0.668 823 57 2 78 1

A-n33-k6 742 740.25 0.971 904 68 3 742 1.065 916 72 3 27 5

A-n34-k5 778 774.429 1.244 1111 80 2 778 2.396 1205 98 3 101 14

A-n36-k5 799 798.322 2.728 1515 109 3 799 3.159 1520 113 3 323 8

A-n37-k5 669 666.625 2.299 1659 107 2 669 5.185 1915 135 3 89 10

A-n37-k6 949 937.027 1.03 942 65 3 945.577 9.546 1404 170 4 1077 58

A-n38-k5 730 723.4 2.078 1286 97 2 728.8 9.118 1544 153 6 665 54

A-n39-k5 822 817.524 4.207 1631 123 3 822 46.575 2432 230 5 1362 54

A-n39-k6 831 824.38 1.988 1365 98 2 831 13.268 1824 152 5 542 46

A-n44-k6 937 934.9 1.991 1258 92 2 937 2.331 1269 96 2 155 5

A-n45-k6 944 941.226 2.972 1548 112 4 944 8.115 1722 128 6 676 41

A-n45-k7 1146 1140.53 3.757 1515 122 2 1146 10.719 1769 156 5 660 56

A-n46-k7 914 914 2.33 1733 112 3 914 2.494 1762 115 2 138 1

A-n48-k7 1073 1071.54 2.981 1504 114 3 1073 10.765 1883 154 7 422 32

A-n53-k7 1010 1003.63 10.092 2615 206 2 1010 160.185 3196 301 8 2128 70

A-n54-k7 1167 1155.15 7.267 1986 148 4 1166.36 130.96 3173 338 9 2801 153

A-n55-k9 1073 1068.47 3.592 1683 116 3 1071.8 10.344 1988 173 3 1224 32

A-n60-k9 1354 1344.96 6.223 2167 144 2 1352.02 40.567 2865 237 5 2003 123

A-n61-k9 1034 1023.58 5.091 1745 126 3 1032 31.269 2242 220 6 1475 78

A-n62-k8 1288 1280.75 10.769 2622 179 4 1286.07 98.741 3433 346 10 4832 94

A-n63-k10 1314 1302.42 5.007 2073 133 5 1309.66 24.298 2665 216 5 1862 73

Continued on next page
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Table V.4: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n63-k9 1616 1608.54 9.112 2023 156 1 1616 44.395 2831 244 5 1482 65

A-n64-k9 1401 1387.16 5.764 2275 149 3 1395.86 124.498 3208 328 9 3491 125

A-n65-k9 1174 1166.56 7.007 2090 151 1 1174 35.977 2775 219 8 854 67

A-n69-k9 1159 1143.18 9.42 2463 165 2 1157.18 62.64 3370 276 5 2654 115

A-n80-k10 1763 1755.82 15.563 3434 215 4 1761.55 177.429 4614 396 9 3241 128

B-n45-k5 751 750.6 6.196 2566 173 6 751 7.888 2658 186 5 281 8

B-n41-k6 829 828.429 1.93 1246 98 3 829 2.46 1268 101 3 104 6

B-n39-k5 549 549 3.259 1862 133 4 549 3.249 1862 133 4 0 0

B-n38-k6 805 804.143 1.82 1383 104 3 805 2.418 1401 111 3 150 10

B-n35-k5 955 955 1.675 1713 109 2 955 1.724 1713 109 2 0 0

B-n34-k5 788 784.926 3.658 1897 148 2 788 13.108 2255 184 5 539 41

B-n31-k5 672 672 0.609 997 59 2 672 0.624 997 59 2 0 0

B-n57-k7 1153 1153 5.504 2352 148 4 1153 5.72 2352 148 4 0 0

B-n56-k7 707 705 6.278 2512 172 5 705 7.874 2548 181 5 483 4

B-n52-k7 747 746.333 6.075 2384 162 3 747 7.942 2447 169 3 738 10

B-n51-k7 1032 1026.83 6.75 2253 158 2 1032 535.377 2886 237 10 2438 82

B-n50-k8 1312 1303.39 4.563 1602 118 2 1309.35 42.724 2123 294 7 3259 68

B-n50-k7 741 741 4.917 2328 158 4 741 6.047 2368 164 4 619 3

B-n45-k6 678 677.973 2.684 1515 113 2 678 5.585 1619 127 3 500 22

B-n44-k7 909 909 1.963 1420 94 3 909 1.95 1420 94 3 0 0

B-n43-k6 742 736.825 2.601 1505 102 2 740.091 32.751 1978 219 5 2365 93

B-n78-k10 1221 1216.39 12.419 3348 209 2 1221 41.201 3803 264 7 2021 56

B-n68-k9 1272 1263.7 12.939 3006 202 3 1267.79 1060.51 4070 424 11 4180 140

Continued on next page

DBD
PUC-Rio - Certificação Digital Nº 1321837/CA



C
h
ap

ter
V
.
C
om

p
u
tation

al
E
x
p
erim

en
ts

53

Table V.4: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

B-n67-k10 1032 1027.56 7.744 2634 179 4 1030.85 125.411 3416 333 10 3062 107

B-n66-k9 1316 1307.84 9.36 2769 183 2 1315.24 237.342 3788 378 10 3548 149

B-n64-k9 861 860.417 7.706 2779 176 3 861 9.044 2839 184 3 152 10

B-n57-k9 1598 1596 5.47 2061 150 4 1598 25.824 2405 218 7 2508 67

B-n63-k10 1496 1487.07 6.154 2166 150 3 1496 57.377 3241 262 8 1487 89

E-n76-k8 735 725.19 21.273 3307 233 2 734.091 469.267 5330 506 9 4543 187

E-n76-k7 682 669.015 11.097 3317 193 2 — — — — — — —

E-n76-k14 1021 1006.94 1.812 1362 79 2 1014.75 8.906 1662 148 3 1357 109

E-n76-k10 830 816.627 5.125 2040 130 2 826.44 46.967 2844 232 5 2469 156

E-n51-k5 521 518.357 4.529 1874 128 3 521 13.683 2202 160 4 500 37

E-n33-k4 835 835 4.343 1507 96 3 835 4.418 1507 96 3 0 0

E-n30-k3 534 518.1 3.572 1779 138 3 — — — — — — —

E-n23-k3 569 569 9.122 1023 91 3 569 9.195 1023 91 3 0 0

E-n22-k4 375 375 0.112 363 27 1 375 0.112 363 27 1 0 0

E-n101-k8 815 802.626 61.075 5594 364 4 — — — — — — —

E-n101-k14 1067 1053.52 8.969 3097 184 2 1063.29 87.762 4115 334 6 2739 193

E-n31-k7 379 378.333 0.795 1030 62 1 379 0.675 1054 70 1 46 5

E-n13-k4 247 247 0.021 73 10 1 247 0.014 73 10 1 0 0

P-n55-k10 694 681.754 1.086 1051 67 1 689.202 7.701 1330 144 4 1003 86

P-n23-k8 529 529 0.017 563 4 1 529 0.017 563 4 1 0 0

P-n50-k10 696 689.362 0.594 850 52 1 694.907 1.741 992 80 2 272 47

P-n45-k5 510 505.944 2.67 1628 110 1 510 16.43 2168 174 3 952 57

P-n40-k5 458 456.875 1.699 1395 87 1 458 5.474 1697 117 3 201 17

Continued on next page
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Table V.4: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

P-n22-k8 603 603 0.034 147 14 1 603 0.028 147 14 1 0 0

P-n22-k2 216 215.5 0.77 884 68 2 216 1.157 971 80 1 60 3

P-n21-k2 211 211 0.464 672 54 1 211 0.477 672 54 1 0 0

P-n20-k2 216 213 0.526 650 60 2 216 1.264 719 83 2 198 9

P-n19-k2 212 212 0.369 443 44 2 212 0.36 443 44 2 0 0

P-n16-k8 450 448 0.033 64 12 1 450 0.024 64 14 1 1 1

P-n101-k4 681 676.428 392.77 12593 854 17 — — — — — — —

P-n76-k5 627 615.748 37.079 4666 308 4 — — — — — — —

P-n76-k4 593 587.459 62.493 5560 409 4 593 1533.34 8953 771 13 3500 76

P-n70-k10 827 813.335 2.631 1695 103 1 823.157 31.852 2353 222 4 2077 155

P-n65-k10 792 786.858 2.14 1432 90 2 792 5.785 1685 111 3 696 54

P-n60-k15 968 963.469 0.57 827 55 1 967.717 2.181 928 94 2 338 54

P-n60-k10 744 738.864 1.039 1188 68 1 743.513 6.475 1521 125 3 1013 73

P-n55-k7 568 558.912 2.467 1605 96 2 565.667 88.576 2597 216 6 1833 108

P-n55-k15 989 972.543 29.417 162386 18 2 984.614 210.101 162464 82 3 379 55

P-n51-k10 741 736.075 0.872 899 63 2 741 2.474 1042 86 3 357 43

P-n50-k8 631 616.66 0.723 851 52 1 625.753 10.61 1249 145 4 933 111

P-n50-k7 554 550.651 2.698 1431 96 2 554 6.103 1720 120 2 351 31

M-n151-k12 1015 998.665 73.574 7685 436 4 1012.1 4563.55 11909 968 19 9849 324

M-n121-k7 1034 1032.43 148.464 8962 543 11 1033.6 1544.63 10699 790 16 5993 42

M-n101-k10 820 820 20.81 5340 349 9 820 29.92 5721 378 11 1470 3

M-n200-k16 1274 1251.35 161.984 9784 528 5 — — — — — — —

Continued on next page
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Table V.4: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

M-n200-k17 1275 1254.15 170.64 9854 540 4 — — — — — — —

Average 856.524 851.644 7.882 3801.631 126.405 2.607 855.595 143.019 4259.167 194.988 4.893 1261.024 53.679
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Table V.5: DSSR + CB + CC

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n32-k5 784 784 1.234 1180 84 1 784 1.257 1180 84 1 0 0

A-n33-k5 661 661 0.524 822 55 1 661 0.614 822 56 1 78 0

A-n33-k6 742 740.25 0.964 903 68 3 742 1.08 916 72 3 27 5

A-n34-k5 778 774.429 1.309 1111 80 2 778 2.423 1205 98 3 101 14

A-n36-k5 799 798.322 2.637 1513 109 3 799 3.54 1520 114 4 323 5

A-n37-k5 669 666.625 2.413 1659 107 2 669 5.327 1916 136 3 89 11

A-n37-k6 949 937.027 0.891 941 65 3 945.582 10.332 1401 171 5 1077 57

A-n38-k5 730 723.4 2.041 1284 97 2 728.8 9.654 1529 153 6 636 55

A-n39-k5 822 817.524 3.91 1631 123 3 822 76.514 2412 228 6 1362 61

A-n39-k6 831 824.395 2.082 1363 96 1 831 27.136 1820 154 7 542 47

A-n44-k6 937 934.9 2.085 1258 92 2 937 2.446 1269 96 2 155 5

A-n45-k6 944 941.238 2.992 1551 110 3 944 7.243 1705 123 3 676 47

A-n45-k7 1146 1140.53 4.692 1515 123 2 1146 10.894 1758 152 3 660 53

A-n46-k7 914 914 2.782 1747 114 2 914 2.955 1762 115 2 138 1

A-n48-k7 1073 1071.54 3.636 1504 114 3 1073 11.487 1874 148 5 422 37

A-n53-k7 1010 1003.63 12.283 2613 206 2 1010 244.663 3178 294 8 1899 69

A-n54-k7 1167 1155.17 7.223 1976 148 3 1166.38 196.794 3187 330 8 2867 150

A-n55-k9 1073 1068.47 3.322 1682 116 3 1071.8 10.571 1987 168 5 1168 43

A-n60-k9 1354 1344.96 5.334 2164 142 1 1352.04 61.802 2879 252 7 2164 121

A-n61-k9 1034 1023.58 4.642 1743 127 2 1032 41.279 2296 257 7 1706 79

A-n62-k8 1288 1280.75 9.813 2626 179 3 1286.07 123.024 3394 323 9 3846 93

A-n63-k10 1314 1302.43 4.058 2066 128 2 1309.67 25.685 2670 221 5 1953 74

Continued on next page
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Table V.5: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

A-n63-k9 1616 1608.54 8.875 2023 156 1 1616 42.104 2833 248 5 1482 70

A-n64-k9 1401 1388.08 6.168 2274 153 3 1395.86 1098.3 3173 329 7 3356 134

A-n65-k9 1174 1166.56 6.657 2090 151 1 1174 30.899 2776 218 5 854 65

A-n69-k9 1159 1143.3 7.007 2459 165 2 1157.18 76.585 3353 278 4 2545 113

A-n80-k10 1763 1755.83 15.552 3426 217 4 1761.58 862.729 4580 395 7 2970 124

B-n45-k5 751 750.6 5.488 2562 168 4 751 7.335 2626 182 3 281 8

B-n41-k6 829 828.429 2.046 1246 98 3 829 2.257 1267 101 2 104 7

B-n39-k5 549 549 3.501 1860 137 4 549 3.463 1860 137 4 0 0

B-n38-k6 805 804.143 1.941 1383 104 3 805 2.54 1401 111 3 150 10

B-n35-k5 955 955 1.931 1713 109 2 955 1.942 1713 109 2 0 0

B-n34-k5 788 784.926 4.251 1897 148 2 788 15.622 2253 183 5 539 41

B-n31-k5 672 672 0.648 997 59 2 672 0.634 997 59 2 0 0

B-n57-k7 1153 1153 4.954 2336 146 3 1153 5.128 2336 146 3 0 0

B-n56-k7 707 705 5.711 2473 166 4 705 6.689 2484 169 3 483 3

B-n52-k7 747 746.333 5.825 2380 164 3 747 9.066 2452 175 4 859 11

B-n51-k7 1032 1026.83 6.218 2252 158 2 1032 3160.47 2880 234 9 2492 87

B-n50-k8 1312 1303.48 3.984 1591 117 2 1309.35 45.249 2186 308 7 3899 67

B-n50-k7 741 741 4.194 2319 158 4 741 4.806 2384 167 4 619 3

B-n45-k6 678 677.973 2.831 1515 113 2 678 5.035 1610 129 3 500 24

B-n44-k7 909 909 1.795 1417 94 2 909 1.734 1417 94 2 0 0

B-n43-k6 742 736.825 2.588 1503 101 1 740.09 119.843 1977 226 5 2311 89

B-n78-k10 1221 1216.39 12.983 3345 210 2 1221 37.655 3761 256 6 2000 50

B-n68-k9 1272 1263.71 11.017 2998 201 2 — — — — — — —

Continued on next page
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Table V.5: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

B-n67-k10 1032 1027.59 6.717 2616 171 2 1030.86 655.782 3391 316 6 2581 120

B-n66-k9 1316 1307.84 8.963 2769 184 3 1315.24 3879 3791 384 10 3847 152

B-n64-k9 861 860.438 8.215 2777 176 3 861 9.305 2834 183 2 152 11

B-n57-k9 1598 1596 6.783 2065 152 4 1598 23.306 2389 216 4 2283 66

B-n63-k10 1496 1487.07 5.844 2162 150 3 1496 62.087 3207 257 5 1487 86

E-n76-k8 735 725.19 18.542 3254 227 2 734.092 1160.41 5323 525 9 4648 191

E-n76-k7 682 669.015 9.838 3317 193 2 — — — — — — —

E-n76-k14 1021 1006.94 1.559 1362 79 2 1014.75 10.203 1661 155 3 1371 106

E-n76-k10 830 816.627 5.075 2040 130 2 826.438 49.762 2844 238 5 2464 149

E-n51-k5 521 518.357 4.163 1874 128 3 521 13.395 2188 164 5 500 41

E-n33-k4 835 835 3.672 1514 99 3 835 3.687 1514 99 3 0 0

E-n30-k3 534 518.1 2.769 1779 138 3 — — — — — — —

E-n23-k3 569 569 7.326 1023 91 3 569 5.971 1023 91 3 0 0

E-n22-k4 375 375 0.098 363 27 1 375 0.1 363 27 1 0 0

E-n101-k8 815 802.626 63.515 5608 366 4 — — — — — — —

E-n101-k14 1067 1053.52 8.041 3097 184 2 1063.3 89.425 4106 334 6 2713 196

E-n31-k7 379 378.333 0.522 1030 62 1 379 0.646 1054 70 1 46 5

E-n13-k4 247 247 0.014 73 10 1 247 0.014 73 10 1 0 0

P-n55-k10 694 681.754 0.914 1051 67 1 689.203 7.707 1328 146 5 1013 86

P-n23-k8 529 529 0.022 563 4 1 529 0.03 563 4 1 0 0

P-n50-k10 696 689.362 0.589 850 52 1 695.019 1.817 992 80 2 250 47

P-n45-k5 510 505.944 2.585 1628 110 1 510 15.187 2168 174 3 952 57

P-n40-k5 458 456.875 1.631 1395 87 1 458 4.65 1694 116 3 201 17

Continued on next page
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Table V.5: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

P-n22-k8 603 603 0.041 147 14 1 603 0.087 147 14 1 0 0

P-n22-k2 216 215.5 0.646 884 68 2 216 1.011 971 80 1 60 3

P-n21-k2 211 211 0.465 672 54 1 211 0.461 672 54 1 0 0

P-n20-k2 216 213 0.482 650 60 2 216 1.143 719 83 2 198 9

P-n19-k2 212 212 0.297 443 44 2 212 0.348 443 44 2 0 0

P-n16-k8 450 448 0.024 64 12 1 450 0.018 64 14 1 1 1

P-n101-k4 681 676.428 430.519 12573 867 14 — — — — — — —

P-n76-k5 627 615.748 38.204 4697 311 5 — — — — — — —

P-n76-k4 593 587.459 62.629 5560 409 4 593 2238.44 9002 763 15 3000 68

P-n70-k10 827 813.335 3.429 1695 103 1 823.172 45.677 2324 231 5 2082 157

P-n65-k10 792 786.858 1.886 1432 90 2 792 6.538 1682 111 3 696 54

P-n60-k15 968 963.469 0.578 827 55 1 967.717 2.004 928 94 2 338 54

P-n60-k10 744 738.864 1.033 1188 68 1 743.516 5.914 1512 118 2 975 73

P-n55-k7 568 558.922 1.879 1604 95 1 565.667 212.994 2603 218 5 1833 108

P-n55-k15 989 972.572 24.743 162385 16 1 985.347 140.187 162452 58 1 267 55

P-n51-k10 741 736.075 0.862 899 63 2 741 2.005 1038 85 2 357 44

P-n50-k8 631 616.66 0.666 851 52 1 625.773 12.586 1236 143 4 884 107

P-n50-k7 554 550.651 3.205 1430 95 1 554 6.153 1719 121 3 351 33

M-n151-k12 1015 998.727 83.733 7658 435 3 — — — — — — —

M-n121-k7 1034 1032.44 139.966 8777 532 1 0 1033.6 2476.88 10665 792 13 6820 49

M-n101-k10 820 820 20.708 5330 344 14 820 29.576 5806 383 13 970 4

M-n200-k16 1274 1251.35 206.593 9762 530 5 — — — — — — —

Continued on next page
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Table V.5: Continued from previous page

Ins OPT
without lm-SRC with lm-SRC

Value Time Routes Heu Exa Value Time Routes Heu Exa Sep Act

M-n200-k17 1275 1254.15 191.417 9812 534 3 — — — — — — —

Average 849.524 844.842 6.717 3759.232 121.207 2.259 848.672 214.528 4164.488 182.854 4.293 1105.768 49.780
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Chapter V. Computational Experiments 61

Table V.6: Comparison with Pecin et al.

Ins OPT PPPU Our results Difference

A-n37-k5 669 669 669 0

A-n37-k6 949 946.02 945.582 0.438

A-n38-k5 730 730 728.8 1.2

A-n39-k5 822 822 822 0

A-n39-k6 831 831 831 0

A-n44-k6 937 937 937 0

A-n45-k6 944 944 944 0

A-n45-k7 1146 1146 1146 0

A-n46-k7 914 914 914 0

A-n48-k7 1073 1073 1073 0

A-n53-k7 1010 1010 1010 0

A-n54-k7 1167 1167 1166.38 0.62

A-n55-k9 1073 1073 1071.8 1.2

A-n60-k9 1354 1354 1352.04 1.96

A-n61-k9 1034 1034 1032 2

A-n62-k8 1288 1287.15 1286.07 1.08

A-n63-k9 1616 1616 1616 0

A-n63-k10 1314 1310.61 1309.67 0.94

A-n64-k9 1401 1394.55 1395.86 -1.31

A-n65-k9 1174 1174 1174 0

A-n69-k9 1159 1159 1157.18 1.82

A-n80-k10 1763 1763 1761.58 1.42

B-n38-k6 805 805 805 0

B-n39-k5 549 549 549 0

B-n41-k6 829 829 829 0

B-n43-k6 742 742 740.09 1.91

B-n44-k7 909 909 909 0

B-n45-k5 751 751 751 0

B-n45-k6 678 678 678 0

B-n50-k7 741 741 741 0

B-n50-k8 1312 1309.68 1309.35 0.33

B-n51-k7 1032 1032 1032 0

B-n52-k7 747 747 747 0

B-n56-k7 707 705 705 0

B-n57-k7 1153 1153 1153 0

B-n57-k9 1598 1598 1598 0

B-n63-k10 1496 1496 1496 0

B-n64-k9 861 861 861 0

Continued on next page
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Chapter V. Computational Experiments 62

Table V.6: Continued from previous page

Ins OPT PPPU Our results Difference

B-n66-k9 1316 1316 1315.24 0.76

B-n67-k10 1032 1032 1030.86 1.14

B-n68-k9 1272 1267.45 — —

B-n78-k10 1221 1221 1221 0

E-n51-k5 521 521 521 0

E-n76-k7 682 682 — —

E-n76-k8 735 735 734.092 0.908

E-n76-k10 830 828.2 826.438 1.762

E-n76-k14 1021 1016.24 1014.75 1.49

E-n101-k8 815 815 — —

E-n101-k14 1067 1063.91 1063.3 0.61

M-n101-k10 820 820 820 0

M-n121-k7 1034 1034 1033.6 0.4

M-n151-k12 1015 1011.74 — —

M-n200-k16 1274 1266.53 — —

M-n200-k17 1275 1268.71 — —

P-n16-k8 450 448 450 -2

P-n19-k2 212 212 212 0

P-n20-k2 216 216 216 0

P-n21-k2 211 211 211 0

P-n22-k2 216 216 216 0

P-n22-k8 603 603 603 0

P-n23-k8 529 529 529 0

P-n40-k5 458 458 458 0

P-n45-k5 510 510 510 0

P-n50-k7 554 554 554 0

P-n50-k8 631 628.65 625.773 2.877

P-n50-k10 696 696 695.019 0.981

P-n51-k10 741 741 741 0

P-n55-k7 568 566.02 565.667 0.353

P-n55-k10 694 690.19 689.203 0.987

P-n55-k15 989 987.02 985.347 1.673

P-n60-k10 744 743.68 743.516 0.164

P-n60-k15 968 963.47 967.717 -4.247

P-n65-k10 792 792 792 0

P-n70-k10 827 823.89 823.172 0.718

P-n76-k4 593 593 593 0

P-n76-k5 627 627 — —

Continued on next page
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Chapter V. Computational Experiments 63

Table V.6: Continued from previous page

Ins OPT PPPU Our results Difference

P-n101-k4 681 681 — —

Average 885.174 884.482 884.161 0.322
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VI
Conclusion

This master thesis proposed to assess the leverage achieved with the combina-

tion of the lm-SRC with other techniques, like Decremental Space State Relaxation

(DSSR), Completion Bounds, ng-routes and capacity cuts over a Set Partitioning

Formulation for the problem.

Observing the results presented in Chapter V we can highlight some points:

– The addition of lm-SRC was responsible to improve the bounds for almost all

instances with running time smaller than two hours however when combining

them with capacity cuts, the bounds have a great improvement. The average

difference between the optimum value and the bound found decreased from

5.0 to 0.9 in the last two configurations.

– The column generation lower bounds found were on majority equal to the ones

found by Pecin et al. [19]. When they were better, the difference was quite

small and for 3 instances our lower bounds were better. However, 9 instances

found in their work did not finished within the time limit.

– The time required by the lm-SRC did not improved with the consideration of

DSSR and Completion Bounds when using these techniques with respect to

the ng-routes. These techniques can be adapted to the lm-SRC, but it was

not implemented in this work.

As future works and extensions we suggest: (i) a route enumeration to verify

which instances can be solved; and (ii) the improvement of the approach started in

this work. Techniques that speed up the pricing as reduced cost variable fixing, ways

to strengthen the completion bounds should be tested, as well as other strong cuts

which can be separated in the SP formulation (other lm-SRCs and Strong Degree

cuts, for example).
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[12] PESSOA, A.; DE ARAGÃO, M. P.; UCHOA, E.. Robust branch-cut-and-

price algorithms for vehicle routing problems. In: THE VEHICLE
ROUTING PROBLEM: LATEST ADVANCES AND NEW CHALLENGES, p.
297–325. Springer, 2008. I.1

[13] MARTINELLI, R.; PECIN, D.; POGGI, M.; LONGO, H.. A branch-cut-

and-price algorithm for the capacitated arc routing problem. In:
Pardalos, P.; Rebennack, S., editors, EXPERIMENTAL ALGORITHMS, v. 6630
of Lecture Notes in Computer Science, p. 315–326. Springer Berlin /
Heidelberg, 2011. I.1

[14] RIGHINI, G.; SALANI, M.. Symmetry helps: Bounded bi-directional

dynamic programming for the elementary shortest path problem with

resource constraints. Discrete Optimization, 3(3):255–273, Sept. 2006. I.1

[15] MARTINELLI, R.; PECIN, D.; POGGI, M.. Efficient elementary and re-

stricted non-elementary route pricing. European Journal of Operational
Research, 2014. I.1, III.2

[16] CONTARDO, C.. A new exact algorithm for the multi-depot vehicle

routing problem under capacity and route length constraints. Tech-
nical report, Archipel-UQAM 5078, Université du Québec à Montréal, Canada,
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